Matching Items (3)
Filtering by

Clear all filters

151500-Thumbnail Image.png
Description
Communication networks, both wired and wireless, are expected to have a certain level of fault-tolerance capability.These networks are also expected to ensure a graceful degradation in performance when some of the network components fail. Traditional studies on fault tolerance in communication networks, for the most part, make no assumptions regarding

Communication networks, both wired and wireless, are expected to have a certain level of fault-tolerance capability.These networks are also expected to ensure a graceful degradation in performance when some of the network components fail. Traditional studies on fault tolerance in communication networks, for the most part, make no assumptions regarding the location of node/link faults, i.e., the faulty nodes and links may be close to each other or far from each other. However, in many real life scenarios, there exists a strong spatial correlation among the faulty nodes and links. Such failures are often encountered in disaster situations, e.g., natural calamities or enemy attacks. In presence of such region-based faults, many of traditional network analysis and fault-tolerant metrics, that are valid under non-spatially correlated faults, are no longer applicable. To this effect, the main thrust of this research is design and analysis of robust networks in presence of such region-based faults. One important finding of this research is that if some prior knowledge is available on the maximum size of the region that might be affected due to a region-based fault, this piece of knowledge can be effectively utilized for resource efficient design of networks. It has been shown in this dissertation that in some scenarios, effective utilization of this knowledge may result in substantial saving is transmission power in wireless networks. In this dissertation, the impact of region-based faults on the connectivity of wireless networks has been studied and a new metric, region-based connectivity, is proposed to measure the fault-tolerance capability of a network. In addition, novel metrics, such as the region-based component decomposition number(RBCDN) and region-based largest component size(RBLCS) have been proposed to capture the network state, when a region-based fault disconnects the network. Finally, this dissertation presents efficient resource allocation techniques that ensure tolerance against region-based faults, in distributed file storage networks and data center networks.
ContributorsBanerjee, Sujogya (Author) / Sen, Arunabha (Thesis advisor) / Xue, Guoliang (Committee member) / Richa, Andrea (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2013
152500-Thumbnail Image.png
Description
As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.
ContributorsShirazipourazad, Shahrzad (Author) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Richa, Andrea (Committee member) / Saripalli, Srikanth (Committee member) / Arizona State University (Publisher)
Created2014
137465-Thumbnail Image.png
Description
As technologies advance, so does the curiosity and exploration of humankind. There are many domains across this planet that are unexplored \u2014 the depths of Earth's ocean being one of the most predominant. While the ocean covers seventy percent of Earth's surface, a vast ninety-five percent of this realm remains

As technologies advance, so does the curiosity and exploration of humankind. There are many domains across this planet that are unexplored \u2014 the depths of Earth's ocean being one of the most predominant. While the ocean covers seventy percent of Earth's surface, a vast ninety-five percent of this realm remains untouched and unseen by the human eye. The biggest causality of this can be identified in the limitations of current technologies and the large expense associated with delving into these dangerous and uncharted areas. Underwater communication between unmanned devices is the solution to this problem. With the oceanic deployment of wirelessly connected unmanned underwater vehicles (UUVs), researchers can limit risk to human safely and retrieve invaluable oceanographic data from unimaginable depths. However, before this system can be physically deployed, the network topology and environmental interactions must be simulated. More specific to the application, how does attenuation of optical propagation degrade between transmissions? A widely used open source network simulator is the ns series: ns-1, ns-2, and ns-3. Ns-3 is the most recent version, and is a valuable tool for modeling network interactions. However, underwater simulation proposes a limitation \u2014 a three-dimensional consideration for pressure. To properly model this interaction, it is vital that an extension to ns-3 be provided in order to account for the affects pressure has on the propagation of a signal at varying depths.
ContributorsSowa, Ryan John (Author) / Richa, Andrea (Thesis director) / Saripalli, Srikanth (Committee member) / Zhou, Chenyang (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05