Matching Items (3)
Filtering by

Clear all filters

152500-Thumbnail Image.png
Description
As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.
ContributorsShirazipourazad, Shahrzad (Author) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Richa, Andrea (Committee member) / Saripalli, Srikanth (Committee member) / Arizona State University (Publisher)
Created2014
152886-Thumbnail Image.png
Description
As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on

As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on industry established expectations of power consumption and mobility. Current methods of distributing the spectrum among all participants are expected to not cope with the demand in a very near future. In this thesis, the effect of employing sophisticated multiple-input, multiple-output (MIMO) systems in this regard is explored. The efficacy of systems which can make intelligent decisions on the transmission mode usage and power allocation to these modes becomes relevant in the current scenario, where the need for performance far exceeds the cost expendable on hardware. The effect of adding multiple antennas at either ends will be examined, the capacity of such systems and of networks comprised of many such participants will be evaluated. Methods of simulating said networks, and ways to achieve better performance by making intelligent transmission decisions will be proposed. Finally, a way of access control closer to the physical layer (a 'statistical MAC') and a possible metric to be used for such a MAC is suggested.
ContributorsThontadarya, Niranjan (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2014
137465-Thumbnail Image.png
Description
As technologies advance, so does the curiosity and exploration of humankind. There are many domains across this planet that are unexplored \u2014 the depths of Earth's ocean being one of the most predominant. While the ocean covers seventy percent of Earth's surface, a vast ninety-five percent of this realm remains

As technologies advance, so does the curiosity and exploration of humankind. There are many domains across this planet that are unexplored \u2014 the depths of Earth's ocean being one of the most predominant. While the ocean covers seventy percent of Earth's surface, a vast ninety-five percent of this realm remains untouched and unseen by the human eye. The biggest causality of this can be identified in the limitations of current technologies and the large expense associated with delving into these dangerous and uncharted areas. Underwater communication between unmanned devices is the solution to this problem. With the oceanic deployment of wirelessly connected unmanned underwater vehicles (UUVs), researchers can limit risk to human safely and retrieve invaluable oceanographic data from unimaginable depths. However, before this system can be physically deployed, the network topology and environmental interactions must be simulated. More specific to the application, how does attenuation of optical propagation degrade between transmissions? A widely used open source network simulator is the ns series: ns-1, ns-2, and ns-3. Ns-3 is the most recent version, and is a valuable tool for modeling network interactions. However, underwater simulation proposes a limitation \u2014 a three-dimensional consideration for pressure. To properly model this interaction, it is vital that an extension to ns-3 be provided in order to account for the affects pressure has on the propagation of a signal at varying depths.
ContributorsSowa, Ryan John (Author) / Richa, Andrea (Thesis director) / Saripalli, Srikanth (Committee member) / Zhou, Chenyang (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05