Matching Items (2)
Filtering by

Clear all filters

Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137733-Thumbnail Image.png
Description
In this study, the entrainment of brain dynamics in epilepsy was investigated in a thorough, systematic way. In the first part of the study, diagnosis of epilepsy, elements from the theory of chaos were used to measure the brain dynamics over time from EEGs (electroencephalograms) recorded in humans with either

In this study, the entrainment of brain dynamics in epilepsy was investigated in a thorough, systematic way. In the first part of the study, diagnosis of epilepsy, elements from the theory of chaos were used to measure the brain dynamics over time from EEGs (electroencephalograms) recorded in humans with either epileptic or non-epileptic seizures. In the second part of the study, treatment of epilepsy, data from rats undergoing VNS (vagus nerve stimulation) treatment were analyzed in the same way. The results suggest that a) the differential diagnosis in humans with epileptic and non-epileptic seizures can be significantly improved by analysis of brain dynamics, and b) the Vagus Nerve Stimulation may be working by controlling the entrainment level of brain dynamics.
ContributorsRoth, Austin Edward (Author) / Iasemidis, Leonidas (Thesis director) / Tsakalis, Kostas (Committee member) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05