Matching Items (3)

Filtering by

Clear all filters

133009-Thumbnail Image.png

Development of a Novel Zebrafish Model for Dynamin-1 Epileptic Encephalopathy

Description

Epileptic encephalopathies (EE) are genetic or environmentally-caused conditions that cause “catastrophic” damage or degradation to the sensory, cognitive, and behavioral centers of the brain. Whole-exome sequencing identified de novo heterozygous missense mutations within the DNM1 gene of five pediatric patients

Epileptic encephalopathies (EE) are genetic or environmentally-caused conditions that cause “catastrophic” damage or degradation to the sensory, cognitive, and behavioral centers of the brain. Whole-exome sequencing identified de novo heterozygous missense mutations within the DNM1 gene of five pediatric patients with epileptic encephalopathies. DNM1 encodes for the dynamin-1 protein which is involved in endocytosis and synaptic recycling, and it is a member of dynamin GTPase. The zebrafish, an alternative model system for drug discovery, was utilized to develop a novel model for dynamin-1 epileptic encephalopathy through a small molecule inhibitor. The model system mimicked human epilepsy caused by DNM1 mutations and identified potential biochemical pathways involved in the production of this phenotype. The use of microinjections of mutated DNM1 verified phenotypes and was utilized to determine safe and effective antiepileptic drugs (AEDs) for treatment of this specific EE. This zebrafish dynamin-1 epileptic encephalopathy model has potential uses for drug discovery and investigation of this rare childhood disorder.

Contributors

Created

Date Created
2019-05

135480-Thumbnail Image.png

A Novel Computing Platform for Accelerated Magnetic Resonance Spectroscopic Cancer Imaging

Description

Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension

Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been shown to retain a high level of fidelity even with an acceleration factor of 5. Currently there exist several different scanner types that each have their separate analytical methods in MATLAB. A graphical user interface (GUI) was created to facilitate a single computing platform for these different scanner types in order to improve the ease and efficiency with which researchers and clinicians interact with this technique. A GUI was successfully created for both prospective and retrospective MRSI data analysis. This GUI retained the original high fidelity of the reconstruction technique and gave the user the ability to load data, load reference images, display intensity maps, display spectra mosaics, generate a mask, display the mask, display kspace and save the corresponding spectra, reconstruction, and mask files. Parallelization of the reconstruction algorithm was explored but implementation was ultimately unsuccessful. Future work could consist of integrating this parallelization method, adding intensity overlay functionality and improving aesthetics.

Contributors

Agent

Created

Date Created
2016-05

132964-Thumbnail Image.png

Utilizing Structural MRI Data to Improve Epilepsy Surgery Planning

Description

In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions

In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve surgical outcomes via more structured surgical planning. It is a global effort, with more than 20 sites across 5 continents. The targeted populations for this study include patients whose epilepsy stems from Focal Cortical Dysplasia. Focal Cortical Dysplasia is an abnormality of cortical development, and causes most of the drug-resistant epilepsy. Currently, the creators of MELD have developed a set of protocols which wrap various
commands designed to streamline post-processing of MRI images. Using this partnership, the Applied Neuroscience and Technology Lab at PCH has been able to complete production of a post-processing pipeline which integrates locally sourced smoothing techniques to help identify lesions in patients with evidence of Focal Cortical Dysplasia. The end result is a system in which a patient with epilepsy may experience more successful post-surgical results due to the
combination of a lesion detection mechanism and the radiologist using their trained eye in the presurgical stages. As one of the main points of this work is the global aspect of it, Barrett thesis funding was dedicated for a trip to London in order to network with other MELD project collaborators. This was a successful trip for the project as a whole in addition to this particular thesis. The ability to troubleshoot problems with one another in a room full of subject matter
experts allowed for a high level of discussion and learning. Future work includes implementing machine learning approaches which consider all morphometry parameters simultaneously.

Contributors

Agent

Created

Date Created
2019-05