Matching Items (4)
Filtering by

Clear all filters

135399-Thumbnail Image.png
Description
Language acquisition is a phenomenon we all experience, and though it is well studied many questions remain regarding the neural bases of language. Whether a hearing speaker or Deaf signer, spoken and signed language acquisition (with eventual proficiency) develop similarly and share common neural networks. While signed language and spoken

Language acquisition is a phenomenon we all experience, and though it is well studied many questions remain regarding the neural bases of language. Whether a hearing speaker or Deaf signer, spoken and signed language acquisition (with eventual proficiency) develop similarly and share common neural networks. While signed language and spoken language engage completely different sensory modalities (visual-manual versus the more common auditory-oromotor) both languages share grammatical structures and contain syntactic intricacies innate to all languages. Thus, studies of multi-modal bilingualism (e.g. a native English speaker learning American Sign Language) can lead to a better understanding of the neurobiology of second language acquisition, and of language more broadly. For example, can the well-developed visual-spatial processing networks in English speakers support grammatical processing in sign language, as it relies heavily on location and movement? The present study furthers the understanding of the neural correlates of second language acquisition by studying late L2 normal hearing learners of American Sign Language (ASL). Twenty English speaking ASU students enrolled in advanced American Sign Language coursework participated in our functional Magnetic Resonance Imaging (fMRI) study. The aim was to identify the brain networks engaged in syntactic processing of ASL sentences in late L2 ASL learners. While many studies have addressed the neurobiology of acquiring a second spoken language, no previous study to our knowledge has examined the brain networks supporting syntactic processing in bimodal bilinguals. We examined the brain networks engaged while perceiving ASL sentences compared to ASL word lists, as well as written English sentences and word lists. We hypothesized that our findings in late bimodal bilinguals would largely coincide with the unimodal bilingual literature, but with a few notable differences including additional attention networks being engaged by ASL processing. Our results suggest that there is a high degree of overlap in sentence processing networks for ASL and English. There also are important differences in regards to the recruitment of speech comprehension, visual-spatial and domain-general brain networks. Our findings suggest that well-known sentence comprehension and syntactic processing regions for spoken languages are flexible and modality-independent.
ContributorsMickelsen, Soren Brooks (Co-author) / Johnson, Lisa (Co-author) / Rogalsky, Corianne (Thesis director) / Azuma, Tamiko (Committee member) / Howard, Pamela (Committee member) / Department of Speech and Hearing Science (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137214-Thumbnail Image.png
Description
For this project the main goal was to create a curriculum aimed at fourth grade students. This curriculum was intended to introduce them to different forms of communication, and teach them the skills, attitudes, behavior, and knowledge that would enable them to be able to communicate and interact better with

For this project the main goal was to create a curriculum aimed at fourth grade students. This curriculum was intended to introduce them to different forms of communication, and teach them the skills, attitudes, behavior, and knowledge that would enable them to be able to communicate and interact better with a wide range of people with different types of communication styles. American Sign Language was used for this curriculum as an example of an alternative communication method. The project included developing teaching materials and lessons which made up the curriculum, after that this curriculum was implemented with 11 fourth grade students.
ContributorsStosz, Julia Taylor (Author) / Jordan, Michelle (Thesis director) / Howard, Pamela (Committee member) / Boxwell, Pamela (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor)
Created2014-05
137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05
134531-Thumbnail Image.png
Description
Student to Student: A Guide to Anatomy is an anatomy guide written by students, for students. Its focus is on teaching the anatomy of the heart, lungs, nose, ears and throat in a manner that isn't overpowering or stress inducing. Daniel and I have taken numerous anatomy courses, and fully

Student to Student: A Guide to Anatomy is an anatomy guide written by students, for students. Its focus is on teaching the anatomy of the heart, lungs, nose, ears and throat in a manner that isn't overpowering or stress inducing. Daniel and I have taken numerous anatomy courses, and fully comprehend what it takes to have success in these classes. We found that the anatomy books recommended for these courses are often completely overwhelming, offering way more information than what is needed. This renders them near useless for a college student who just wants to learn the essentials. Why would a student even pick it up if they can't find what they need to learn? With that in mind, our goal was to create a comprehensive, easy to understand, and easy to follow guide to the heart, lungs and ENT (ear nose throat). We know what information is vital for test day, and wanted to highlight these key concepts and ideas in our guide. Spending just 60 to 90 minutes studying our guide should help any student with their studying needs. Whether the student has medical school aspirations, or if they simply just want to pass the class, our guide is there for them. We aren't experts, but we know what strategies and methods can help even the most confused students learn. Our guide can also be used as an introductory resource to our respective majors (Daniel-Biology, Charles-Speech and Hearing) for students who are undecided on what they want to do. In the future Daniel and I would like to see more students creating similar guides, and adding onto the "Student to Student' title with their own works... After all, who better to teach students than the students who know what it takes?
ContributorsKennedy, Charles (Co-author) / McDermand, Daniel (Co-author) / Kingsbury, Jeffrey (Thesis director) / Washo-Krupps, Delon (Committee member) / Department of Speech and Hearing Science (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05