Matching Items (3)
134659-Thumbnail Image.png
Description
Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016,

Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016, which provides the research basis of this thesis, suggests that the coiled-coil domain of yGle1 is best crystallized in dicationic aqueous conditions of pH ~8.0 and 10\u201420% PEG 8000. Further exploration of crystallizable microconditions revealed a favorability toward lower pH and lower PEG concentration. Following the discovery of the protein's native crystallography conditions, a comprehensive meta-analysis of scientific literature on Gle1 was conducted on the association of Gle1 mutations with neuron disease.
ContributorsGaetano, Philip Pasquale (Author) / Foy, Joseph (Thesis director) / Dawson, T. Renee (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
171858-Thumbnail Image.png
Description
Two distinct aspects of synthetic biology were investigated: the development of viral structures for new methods of studying self-assembly and nanomanufacturing, and the designs of genetic controls systems based on controlling the secondary structure of nucleic acids. Viral structures have been demonstrated as building blocks for molecular self-assembly of diverse

Two distinct aspects of synthetic biology were investigated: the development of viral structures for new methods of studying self-assembly and nanomanufacturing, and the designs of genetic controls systems based on controlling the secondary structure of nucleic acids. Viral structures have been demonstrated as building blocks for molecular self-assembly of diverse structures, but the ease with which viral genomes can be modified to create specific structures depends on the mechanisms by which the viral coat proteins self-assemble. The experiments conducted demonstrate how the mechanisms that guide bacteriophage lambda’s self-assembly make it a useful and flexible platform for further research into biologically enabled self-assembly. While the viral platform investigations focus on the creation of new structures, the genetic control systems research focuses on new methods for signal interpretation in biological systems. Regulators of genetic activity that operate based on the secondary structure formation of ribonucleic acid (RNA), also known as riboswitches, are genetically compact devices for controlling protein translation. The toehold switch ribodevice can be modified to enable multiplexed logical operations with RNA inputs, requiring no additional protein transcription factors to regulate activity, but they cannot receive chemical inputs. RNA sequences generated to bind to specific chemicals, known as aptamers, can be used in riboswitches to confer genetic activity upon binding their target chemical. But attempts to use aptamers for logical operations and genetic circuits are difficult to generalize due to differences in sequence and binding strength. The experiments conducted demonstrate a ribodevice structure in which aptamers can be used semi-interchangeably to translate chemical inputs into the toehold switch paradigm, marrying the programmability and orthogonality of toehold switches with the broad sensing potential of aptamer-based ribodevices.
ContributorsMcCutcheon, Griffin Cooper (Author) / Green, Alexander (Thesis advisor) / Hariadi, Rizal (Committee member) / Stephanopoulos, Nicholas (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2022
Description
In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor

In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor (CPSF) complex is responsible for recognizing a short hexameric element AAUAAA located at the 3’end in the nascent mRNA molecule and catalyzing the pre-mRNA cleavage. In the round nematode C. elegans, the cleavage reaction is executed by a subunit of this complex named CPSF3, a highly conserved RNA endonuclease. While the crystal structure of its human ortholog CPSF73 has been recently identified, we still do not understand the molecular mechanisms and sequence specificity used by this protein to induce cleavage, which in turn would help to understand how this process is executed in detail. Additionally, we do not understand in additional factors are needed for this process. In order to address these issues, we performed a comparative analysis of the CPSF3 protein in higher eukaryotes to identify conserved functional domains. The overall percent identities for members of the CPSF complex range from 33.68% to 56.49%, suggesting that the human and C. elegans orthologs retain a high level of conservation. CPSF73 is the protein with the overall highest percent identity of the CPSF complex, with its active site-containing domain possessing 74.60% identity with CPSF3. Additionally, we gathered and expressed using a bacterial expression system CPSF3 and a mutant, which is unable to perform the cleavage reaction, and developed an in vitro cleavage assay to test whether CPSF3 activity is necessary and sufficient to induce nascent mRNA cleavage. This project establishes tools to better understand how CPSF3 functions within the CPC and sheds light on the biology surrounding the transcription process as a whole.
ContributorsGallante, Christina (Author) / Mangone, Marco (Thesis director) / Sharma, Shalini (Committee member) / Hrach, Heather (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05