Matching Items (4)
Filtering by

Clear all filters

155975-Thumbnail Image.png
Description
Cyber-Physical Systems (CPS) are being used in many safety-critical applications. Due to the important role in virtually every aspect of human life, it is crucial to make sure that a CPS works properly before its deployment. However, formal verification of CPS is a computationally hard problem. Therefore, lightweight verification methods

Cyber-Physical Systems (CPS) are being used in many safety-critical applications. Due to the important role in virtually every aspect of human life, it is crucial to make sure that a CPS works properly before its deployment. However, formal verification of CPS is a computationally hard problem. Therefore, lightweight verification methods such as testing and monitoring of the CPS are considered in the industry. The formal representation of the CPS requirements is a challenging task. In addition, checking the system outputs with respect to requirements is a computationally complex problem. In this dissertation, these problems for the verification of CPS are addressed. The first method provides a formal requirement analysis framework which can find logical issues in the requirements and help engineers to correct the requirements. Also, a method is provided to detect tests which vacuously satisfy the requirement because of the requirement structure. This method is used to improve the test generation framework for CPS. Finally, two runtime verification algorithms are developed for off-line/on-line monitoring with respect to real-time requirements. These monitoring algorithms are computationally efficient, and they can be used in practical applications for monitoring CPS with low runtime overhead.
ContributorsDokhanchi, Adel (Author) / Fainekos, Georgios (Thesis advisor) / Lee, Yann-Hang (Committee member) / Sarjoughian, Hessam S. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2017
157060-Thumbnail Image.png
Description
Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they are planned to carry passengers and share the road with

Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they are planned to carry passengers and share the road with other vehicles and pedestrians. Yet, there is no agreed-upon approach on how and in what detail those systems should be tested. Different organizations have different testing approaches, and one common approach is to combine simulation-based testing with real-world driving.

One of the expectations from fully-automated vehicles is never to cause an accident. However, an automated vehicle may not be able to avoid all collisions, e.g., the collisions caused by other road occupants. Hence, it is important for the system designers to understand the boundary case scenarios where an autonomous vehicle can no longer avoid a collision. Besides safety, there are other expectations from automated vehicles such as comfortable driving and minimal fuel consumption. All safety and functional expectations from an automated driving system should be captured with a set of system requirements. It is challenging to create requirements that are unambiguous and usable for the design, testing, and evaluation of automated driving systems. Another challenge is to define useful metrics for assessing the testing quality because in general, it is impossible to test every possible scenario.

The goal of this dissertation is to formalize the theory for testing automated vehicles. Various methods for automatic test generation for automated-driving systems in simulation environments are presented and compared. The contributions presented in this dissertation include (i) new metrics that can be used to discover the boundary cases between safe and unsafe driving conditions, (ii) a new approach that combines combinatorial testing and optimization-guided test generation methods, (iii) approaches that utilize global optimization methods and random exploration to generate critical vehicle and pedestrian trajectories for testing purposes, (iv) a publicly-available simulation-based automated vehicle testing framework that enables application of the existing testing approaches in the literature, including the new approaches presented in this dissertation.
ContributorsTuncali, Cumhur Erkan (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Heni (Committee member) / Kapinski, James (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2019
155738-Thumbnail Image.png
Description
Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day by day. As a result, in recent years, both the academic community and the industry have been heavily invested in developing tools and methodologies for the development of safety-critical systems. One scalable approach in testing and verification of these systems is through guided system simulation using stochastic optimization techniques. The goal of the stochastic optimizer is to find system behavior that does not meet the intended specifications.

In this dissertation, three methods that facilitate the testing and verification process for CPS are presented:

1. A graphical formalism and tool which enables the elicitation of formal requirements. To evaluate the performance of the tool, a usability study is conducted.

2. A parameter mining method to infer, analyze, and visually represent falsifying ranges for parametrized system specifications.

3. A notion of conformance between a CPS model and implementation along with a testing framework.

The methods are evaluated over high-fidelity case studies from the industry.
ContributorsHoxha, Bardh (Author) / Fainekos, Georgios (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Maciejewski, Ross (Committee member) / Ben Amor, Heni (Committee member) / Arizona State University (Publisher)
Created2017
148109-Thumbnail Image.png
Description

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment and identification of objects. The challenge posed in perception systems involves verifying the accuracy and rigidity of detections. The use of Spatio-Temporal Perception Logic (STPL) enables the user to express requirements for the perception system to verify, validate, and ensure its behavior; however, a drawback to STPL involves its accessibility. It is limited to individuals with an expert or higher-level knowledge of temporal and spatial logics, and the formal-written requirements become quite verbose with more restrictions imposed. In this thesis, I propose a domain-specific language (DSL) catered to Spatio-Temporal Perception Logic to enable non-expert users the ability to capture requirements for perception subsystems while reducing the necessity to have an experienced background in said logic. The domain-specific language for the Spatio-Temporal Perception Logic is built upon the formal language with two abstractions. The main abstraction captures simple programming statements that are translated to a lower-level STPL expression accepted by the testing monitor. The STPL DSL provides a seamless interface to writing formal expressions while maintaining the power and expressiveness of STPL. These translated equivalent expressions are capable of directing a standard for perception systems to ensure the safety and reduce the risks involved in ill-formed detections.

ContributorsAnderson, Jacob (Author) / Fainekos, Georgios (Thesis director) / Yezhou, Yang (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05