Matching Items (5)
Filtering by

Clear all filters

137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05
147824-Thumbnail Image.png
Description

Speech motor learning is important for learning to speak during childhood and maintaining the speech system throughout adulthood. Motor and auditory cortical regions play crucial roles in speech motor learning. This experiment aimed to use transcranial alternating current stimulation, a neurostimulation technique, to influence auditory and motor cortical activity. In

Speech motor learning is important for learning to speak during childhood and maintaining the speech system throughout adulthood. Motor and auditory cortical regions play crucial roles in speech motor learning. This experiment aimed to use transcranial alternating current stimulation, a neurostimulation technique, to influence auditory and motor cortical activity. In this study, we used an auditory-motor adaptation task as an experimental model of speech motor learning. Subjects repeated words while receiving formant shifts, which made the subjects’ speech sound different from their production. During the adaptation task, subjects received Beta (20 Hz), Alpha (10 Hz), or Sham stimulation. We applied the stimulation to the ventral motor cortex that is involved in planning speech movements. We found that the stimulation did not influence the magnitude of adaptation. We suggest that some limitations of the study may have contributed to the negative results.

ContributorsMannan, Arhum (Author) / Daliri, Ayoub (Thesis director) / Luo, Xin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131919-Thumbnail Image.png
Description
In the past, researchers have studied the elements of speech and how they work together in the human brain. Auditory feedback, an important aid in speech production, provides information to speakers and allows them to gain an understanding if the prediction of their speech matches their production. The speech motor

In the past, researchers have studied the elements of speech and how they work together in the human brain. Auditory feedback, an important aid in speech production, provides information to speakers and allows them to gain an understanding if the prediction of their speech matches their production. The speech motor system uses auditory goals to determine errors in its auditory output during vowel production. We learn from discrepancies between our prediction and auditory feedback. In this study, we examined error assessment processes by systematically manipulating the correspondence between speech motor outputs and their auditory consequences while producing speech. We conducted a study (n = 14 adults) in which participants’ auditory feedback was perturbed to test their learning rate in two conditions. During the trials, participants repeated CVC words and were instructed to prolong the vowel each time. The adaptation trials were used to examine the reliance of auditory feedback and speech prediction by systematically changing the weight of auditory feedback. Participants heard their perturbed feedback through insert earphones in real time. Each speaker’s auditory feedback was perturbed according to task-relevant and task-irrelevant errors. Then, these perturbations were presented to subjects gradually and suddenly in the study. We found that adaptation was less extensive with task-irrelevant errors, adaptation did not saturate significantly in the sudden condition, and adaptation, which was expected to be extensive and faster in the task-relevant condition, was closer to the rate of adaptation in the task-irrelevant perturbation. Though adjustments are necessary, we found an efficient way for speakers to rely on auditory feedback more than their prediction. Furthermore, this research opens the door to future investigations in adaptation in speech and presents implications for clinical purposes (e.g. speech therapy).
ContributorsLukowiak, Ariana (Author) / Daliri, Ayoub (Thesis director) / Rogalsky, Corianne (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / College of Health Solutions (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132557-Thumbnail Image.png
Description
Past studies have shown that auditory feedback plays an important role in maintaining the speech production system. Typically, speakers compensate for auditory feedback alterations when the alterations persist over time (auditory motor adaptation). Our study focused on how to increase the rate of adaptation by using different auditory feedback conditions.

Past studies have shown that auditory feedback plays an important role in maintaining the speech production system. Typically, speakers compensate for auditory feedback alterations when the alterations persist over time (auditory motor adaptation). Our study focused on how to increase the rate of adaptation by using different auditory feedback conditions. For the present study, we recruited a total of 30 participants. We examined auditory motor adaptation after participants completed three conditions: Normal speaking, noise-masked speaking, and silent reading. The normal condition was used as a control condition. In the noise-masked condition, noise was added to the auditory feedback to completely mask speech outputs. In the silent reading condition, participants were instructed to silently read target words in their heads, then read the words out loud. We found that the learning rate in the noise-masked condition was lower than that in the normal condition. In contrast, participants adapted at a faster rate after they experience the silent reading condition. Overall, this study demonstrated that adaptation rate can be modified through pre-exposing participants to different types auditory-motor manipulations.
ContributorsNavarrete, Karina (Author) / Daliri, Ayoub (Thesis director) / Peter, Beate (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165644-Thumbnail Image.png
Description

When we produce speech movements, we expect a specific auditory consequence, but an error occurs when the predicted outcomes do not match the actual speech outcome. The brain notes these discrepancies, learns from the errors, and works to lower these errors. Previous studies have shown a relationship between speech motor

When we produce speech movements, we expect a specific auditory consequence, but an error occurs when the predicted outcomes do not match the actual speech outcome. The brain notes these discrepancies, learns from the errors, and works to lower these errors. Previous studies have shown a relationship between speech motor learning and auditory targets. Subjects with smaller auditory targets were more sensitive to errors. These subjects estimated larger perturbations and generated larger responses. However, these responses were often ineffective, and the changes were usually minimal. The current study examined whether subjects’ auditory targets can be manipulated in an experimental setting. We recruited 10 healthy young adults to complete a perceptual vowel categorization task. We developed a novel procedure where subjects heard different auditory stimuli and reported the stimuli by locating the stimuli relative to adjacent vowels. We found that when stimuli are closer to vowel boundary, subjects are less accurate. Importantly, by providing visual feedback to subjects, subjects were able to improve their accuracy of locating the stimuli. These results indicated that we might be able to improve subjects’ auditory targets and thus may improve their speech motor learning ability.

ContributorsGurrala, SreeLakshmi (Author) / Daliri, Ayoub (Thesis director) / Chao, Saraching (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Art (Contributor)
Created2022-05