Matching Items (28)
134979-Thumbnail Image.png
Description
Airports are a vital part of the United States' transportation infrastructure. A variety of factors impact the amount of aircraft that an airport can handle per hour. One of these factors is the runway capacity. Strict rules regarding the amount of separation required between two aircraft landing at the same

Airports are a vital part of the United States' transportation infrastructure. A variety of factors impact the amount of aircraft that an airport can handle per hour. One of these factors is the runway capacity. Strict rules regarding the amount of separation required between two aircraft landing at the same airport and lack of available land limit the ways that airport managers and planners can tackle this problem. Research was conducted at the Arizona State University's Simulator Building using the Adacel Tower Simulation System. Modifications to the airport were then made to simulate the high speed exit. Testing utilized aircraft in the large category, including Airbus A320s, which are regularly seen at the airport. Airport capacity dramatically increased as a result. The previous AAR was 33. With the research conducted, aircraft can exit the runway between 27 and 30 seconds with final approach speeds ranging from 130 knots to 150 knots. To allow for a margin for safety, a 35 second runway occupancy time is used. With that rate, assuming that other separation standards are changed to accommodate that traffic level, the runway AAR increases to approximately 100. To reach this potential, changes to the FAAs separation requirements for aircraft on the same final approach course must be made, to allow aircraft to be closer together.
ContributorsRojas, Jorge Alejandro (Author) / Niemczyk, Mary (Thesis director) / Mandeville, Roger (Committee member) / Aviation Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148179-Thumbnail Image.png
Description

September 11th, 2001 was a day that affected everyone. The world came to a stop. The aviation industry was affected, and the national airspace system was closed for a few days. The events that occurred on that specific day enacted changes that affect the industry to this day. This paper

September 11th, 2001 was a day that affected everyone. The world came to a stop. The aviation industry was affected, and the national airspace system was closed for a few days. The events that occurred on that specific day enacted changes that affect the industry to this day. This paper analyzes some of the changes that were made and discusses some of the changes the industry is going through again, about 20 years after the events on September 11th. The coronavirus pandemic has changed the way we all live our daily lives and aviation is not exempt. Changes to aircraft cleaning procedures, boarding processes, and seat design have all been ways the industry has gone through changes. The results of a potential recovery as well as the long-term changes are discussed.

ContributorsPomerantz, Spencer (Author) / Niemczyk, Mary (Thesis director) / Pearson, Michael (Committee member) / Aviation Programs (Contributor, Contributor, Contributor) / Human Systems Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Mission aviation groups operate aircraft in areas with limited infrastructure. Existing airdrop methods pose significant risk due to their lack of steerability. This thesis details the development of Manna, a system built to address these concerns. Manna provides an automated, low cost, safe steerable delivery platform, through a custom designed

Mission aviation groups operate aircraft in areas with limited infrastructure. Existing airdrop methods pose significant risk due to their lack of steerability. This thesis details the development of Manna, a system built to address these concerns. Manna provides an automated, low cost, safe steerable delivery platform, through a custom designed parafoil and guidance unit. Flight tests and simulations show that Manna can provide a safer alternative for critical air deliveries.

ContributorsSchlichting, Audrey (Author) / Severinghaus, Lukas (Co-author) / Wende, Anthony (Thesis director) / Delp, Deana (Committee member) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Aviation Programs (Contributor) / Engineering Programs (Contributor)
Created2023-05
Description

Mission aviation groups operate aircraft in areas with limited infrastructure. Existing airdrop methods pose significant risk due to their lack of steerability. This thesis details the development of Manna, a system built to address these concerns. Manna provides an automated, low cost, safe steerable delivery platform, through a custom designed

Mission aviation groups operate aircraft in areas with limited infrastructure. Existing airdrop methods pose significant risk due to their lack of steerability. This thesis details the development of Manna, a system built to address these concerns. Manna provides an automated, low cost, safe steerable delivery platform, through a custom designed parafoil and guidance unit. Flight tests and simulations show that Manna can provide a safer alternative for critical air deliveries.

ContributorsSeveringhaus, Lukas (Author) / Schlichting, Audrey (Co-author) / Wende, Anthony (Thesis director) / Delp, Deana (Committee member) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2023-05
Description

Pilot suicide has been a topic that has seen increased discussion in the past decade, Aviation regulating bodies have introduced antidepressant programs to aid in reducing the harm depression and other mental illnesses cause pilots. These programs are varied in their structure however they all revolve around SSRI medications. The

Pilot suicide has been a topic that has seen increased discussion in the past decade, Aviation regulating bodies have introduced antidepressant programs to aid in reducing the harm depression and other mental illnesses cause pilots. These programs are varied in their structure however they all revolve around SSRI medications. The FAA HIMS SSRI program for American pilots issues a pathway that is long in duration and can place undue stress on pilots that choose to participate. This has led to high rates of under-reporting and non-treatment of mental illnesses in pilots.

ContributorsBjork, Ivar (Author) / Drew, John (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Aviation Programs (Contributor)
Created2023-05
161080-Thumbnail Image.png
Description

The objective of this thesis is to conduct a case study into the Bell X-2, an early supersonic research aircraft utilizing a modern perspective and computational tools. The Bell X-2 was the second in a series of supersonic research aircraft created by Bell Aviation Corporation, designed to help engineers to

The objective of this thesis is to conduct a case study into the Bell X-2, an early supersonic research aircraft utilizing a modern perspective and computational tools. The Bell X-2 was the second in a series of supersonic research aircraft created by Bell Aviation Corporation, designed to help engineers to explore this new region of flight. The goal of the X-2 was to gather data on high Mach Number and high-altitude flight as well as aerodynamic heating. The X-2 had poor lateral stability resulting in it being unstable at high Mach Numbers and moderate angles of attack. The program was full of new and unforeseen technical challenges resulting in many delays and tragedies. The program ended when stability problems resulted in a fatal crash destroying the aircraft and killing the test pilot. This case study addresses the historical background of the program, human influence, the stability problems encountered and conducting a stability analysis of the aircraft. To conduct the stability analysis, the potential flow solver, VORLAX, was used to gather aerodynamic coefficient data of the X-2 and determine if these stability problems could be determined from the data obtained. By comparing the results from VORLAX to a wind tunnel study, I determined that the poor lateral directional stability and control coupling issues were foreseeable in the initial design.

ContributorsObrien, Kevin (Author) / Takahashi, Timothy (Thesis director) / Nullmeyer, Robert (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2021-12
Description
This Honors thesis was written in partial fulfillment of the requirements for a Bachelor of Science in Human Systems Engineering with Honors. The project consists of a literature review that explores the uses and applications of Machine Learning and Artificial Intelligence techniques in the field of commercial aviation. After a

This Honors thesis was written in partial fulfillment of the requirements for a Bachelor of Science in Human Systems Engineering with Honors. The project consists of a literature review that explores the uses and applications of Machine Learning and Artificial Intelligence techniques in the field of commercial aviation. After a brief introduction and explanation of the most commonly used algorithms in the field of aviation, it explores the applications of Machine Learning techniques for risk reduction, and for the betterment of in-flight operations, and pilot selection, training, and assessment.
ContributorsInderberg, Laura (Author) / Gray, Robert (Thesis director) / Demir, Mustafa (Committee member) / Barrett, The Honors College (Contributor) / Human Systems Engineering (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-12
187627-Thumbnail Image.png
Description
Aviation is a complicated field that involves a wide range of operations, from commercial airline flights to Unmanned Aerial Systems (UAS). Planning and scheduling are essential components in the aviation industry that play a significant role in ensuring safe and efficient operations. Reinforcement Learning (RL) has received increasing attention in

Aviation is a complicated field that involves a wide range of operations, from commercial airline flights to Unmanned Aerial Systems (UAS). Planning and scheduling are essential components in the aviation industry that play a significant role in ensuring safe and efficient operations. Reinforcement Learning (RL) has received increasing attention in recent years due to its capability to enable autonomous decision-making. To investigate the potential advantages and effectiveness of RL in aviation planning and scheduling, three topics are explored in-depth, including obstacle avoidance, task-oriented path planning, and maintenance scheduling. A dynamic and probabilistic airspace reservation concept, called Dynamic Anisotropic (DA) bound, is first developed for UAS, which can be added around the UAS as the separation requirement. A model based on Q-leaning is proposed to integrate DA bound with path planning for obstacle avoidance. Moreover, A deep reinforcement learning algorithm based on Proximal Policy Optimization (PPO) is proposed to guide the UAS to destinations while avoiding obstacles through continuous control. Results from case studies demonstrate that the proposed model can provide accurate and robust guidance and resolve conflict with a success rate of over 99%. Next, the single-UAS path planning problem is extended to a multi-agent system where agents aim to accomplish their own complex tasks. These tasks involve non-Markovian reward functions and can be specified using reward machines. Both cooperative and competitive environments are explored. Decentralized Graph-based reinforcement learning using Reward Machines (DGRM) is proposed to improve computational efficiency for maximizing the global reward in a graph-based Markov Decision Process (MDP). Q-learning with Reward Machines for Stochastic Games (QRM-SG) is developed to learn the best-response strategy for each agent in a competitive environment. Furthermore, maintenance scheduling is investigated. The purpose is to minimize the system maintenance cost while ensuring compliance with reliability requirements. Maintenance scheduling is formulated as an MDP and determines when and what maintenance operations to conduct. A Linear Programming-enhanced RollouT (LPRT) method is developed to solve both constrained deterministic and stochastic maintenance scheduling with an infinite horizon. LPRT categorizes components according to their health condition and makes decisions for each category.
ContributorsHu, Jueming (Author) / Liu, Yongming YL (Thesis advisor) / Yan, Hao HY (Committee member) / Lee, Hyunglae HL (Committee member) / Zhang, Wenlong WZ (Committee member) / Xu, Zhe ZX (Committee member) / Arizona State University (Publisher)
Created2023
171419-Thumbnail Image.png
Description
The primary purpose of this research was to evaluate the differences in retention intention between men and women in collegiate aviation programs. Data was collected through the use of surveys and follow-up interviews. It was found that women are no more likely than men to consider dropping out of their

The primary purpose of this research was to evaluate the differences in retention intention between men and women in collegiate aviation programs. Data was collected through the use of surveys and follow-up interviews. It was found that women are no more likely than men to consider dropping out of their academic institution or abandoning the pursuit of a career in aviation. Regardless of retention intention, women in collegiate aviation programs report a much lower sense of belonging than men, which can be attributed to low self-efficacy, a lack of representation of women, and feeling disconnected from both peers and faculty. All of the women interviewed did not identify gender as a salient identity when describing these similar experiences and instead pointed to other social identities and factors to explain their feelings. Survey and interview results, however, indicate that women in collegiate aviation programs often responded to questions similarly regardless of experience level, race and ethnicity, or sexual orientation.
ContributorsShantz, Rachael M. (Author) / Cirillo, Michael (Thesis advisor) / Roscoe, Rod (Committee member) / Wallmueller, Katherine (Committee member) / Arizona State University (Publisher)
Created2022
Description
Chuck Yeager made his historic flight to break the sound barrier in 1947 flying the Bell X-1, an aircraft designed by the National Advisory Committee for Aeronautics and the US military to conduct research on supersonic travel. From that moment forward, aviation has been focused on harnessing that energy for

Chuck Yeager made his historic flight to break the sound barrier in 1947 flying the Bell X-1, an aircraft designed by the National Advisory Committee for Aeronautics and the US military to conduct research on supersonic travel. From that moment forward, aviation has been focused on harnessing that energy for practical application. The United States government would go on to commission an aircraft that operated faster than the speed of sound and higher than radar detectability in order to perform various cold war missions at a critical phase of history- one of the most notorious aircraft to come out of this supersonic fever was the Lockheed SR-71 Blackbird. In the last century, most research on supersonic speed has been conducted in a military setting, with some notable successes in civil operations, such as the Concorde, the Tupolev Tu-144, and more recently with the development of the Boom Overture aircraft. The engineering that went into the creation of the Blackbird provided groundbreaking innovation throughout the designing and testing process that set it apart from other aircraft of its kind and continues to inspire aerospace engineers working on the high-speed travel of our future.
ContributorsKaneps, Linda (Author) / Hampshire, Michael (Thesis director) / Kimberly, Jimmy (Committee member) / Barrett, The Honors College (Contributor) / Aviation Programs (Contributor)
Created2024-05