Matching Items (4)
Filtering by

Clear all filters

136333-Thumbnail Image.png
Description
Utilizing an urban canopy model (UCM) developed by Zhihua Wang, Ph.D. for a research study conducted for the National Asphalt Pavement Association (NAPA), several scenarios were run in order to determine the impact on the mitigation of the urban heat island (UHI) effect. These scenarios included various roof albedo, wall

Utilizing an urban canopy model (UCM) developed by Zhihua Wang, Ph.D. for a research study conducted for the National Asphalt Pavement Association (NAPA), several scenarios were run in order to determine the impact on the mitigation of the urban heat island (UHI) effect. These scenarios included various roof albedo, wall albedo, ground albedo, a combination of all three albedos, roof emissivity, wall emissivity, ground emissivity, a combination of all three emissivities, and normalized building height as independent variables. Dependent variables included canyon air temperature, effective ground temperature, effective roof temperature, effective wall temperature, and sensible heat flux. It was found that emissivity does play a part in reducing the different dependent variables; however, typically emissivity values are already within a preferred range that not much can be done with them. Normalized building height has a minor impact but the impact that it does have upon the different variables is lessened with lower values of the normalized building height. Increasing the wall albedo decreased the canyon air temperature and the effective wall temperature the most compared to the other variables when considering expenses. An increase in roof albedo reduced effective roof temperature and sensible heat flux the most when taking into consideration the cost of changing the albedo of the surface. Larger values of ground albedo helped to reduce the effective ground temperature more than the other variables considered when a budget is necessary.
ContributorsHousenga, Hannah Eileen (Author) / Kaloush, Kamil (Thesis director) / Wang, Zhihua (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
154333-Thumbnail Image.png
Description
Bioretention basins are a common stormwater best management practice (BMP) used to mitigate the hydrologic consequences of urbanization. Dry wells, also known as vadose-zone wells, have been used extensively in bioretention basins in Maricopa County, Arizona to decrease total drain time and recharge groundwater. A mixed integer nonlinear programming (MINLP)

Bioretention basins are a common stormwater best management practice (BMP) used to mitigate the hydrologic consequences of urbanization. Dry wells, also known as vadose-zone wells, have been used extensively in bioretention basins in Maricopa County, Arizona to decrease total drain time and recharge groundwater. A mixed integer nonlinear programming (MINLP) model has been developed for the minimum cost design of bioretention basins with dry wells.

The model developed simultaneously determines the peak stormwater inflow from watershed parameters and optimizes the size of the basin and the number and depth of dry wells based on infiltration, evapotranspiration (ET), and dry well characteristics and cost inputs. The modified rational method is used for the design storm hydrograph, and the Green-Ampt method is used for infiltration. ET rates are calculated using the Penman Monteith method or the Hargreaves-Samani method. The dry well flow rate is determined using an equation developed for reverse auger-hole flow.

The first phase of development of the model is to expand a nonlinear programming (NLP) for the optimal design of infiltration basins for use with bioretention basins. Next a single dry well is added to the NLP bioretention basin optimization model. Finally the number of dry wells in the basin is modeled as an integer variable creating a MINLP problem. The NLP models and MINLP model are solved using the General Algebraic Modeling System (GAMS). Two example applications demonstrate the efficiency and practicality of the model.
ContributorsLacy, Mason (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2016
154048-Thumbnail Image.png
Description
Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The resulting optimization model is based upon the kinematic wave equation for overland sheet flow along with equations defining the cumulative infiltration and infiltration rate.

In addition to the stormwater management function, Vegetative filter strips (VFS) are effective mechanisms for control of sediment flow and soil erosion from agricultural and urban lands. Erosion is a major problem associated with areas subjected to high runoffs or steep slopes across the globe. In order to effect economy in the design of grass filter strips as a mechanism for sediment control & stormwater management, an optimization model is required that minimizes the land requirements for the VFS. The optimization model presented in this study includes an intricate system of equations including the equations defining the sheet flow on the paved and grassed area combined with the equations defining the sediment transport over the vegetative filter strip using a non-linear programming optimization model. In this study, the optimization model has been applied using a sensitivity analysis of parameters such as different soil types, rainfall characteristics etc., performed to validate the model
ContributorsKhatavkar, Puneet N (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Committee member) / Wang, Zhihua (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2015
153883-Thumbnail Image.png
Description
A model is presented for real-time, river-reservoir operation systems. It epitomizes forward-thinking and efficient approaches to reservoir operations during flooding events. The optimization/simulation includes five major components. The components are a mix of hydrologic and hydraulic modeling, short-term rainfall forecasting, and optimization and reservoir operation models.

A model is presented for real-time, river-reservoir operation systems. It epitomizes forward-thinking and efficient approaches to reservoir operations during flooding events. The optimization/simulation includes five major components. The components are a mix of hydrologic and hydraulic modeling, short-term rainfall forecasting, and optimization and reservoir operation models. The optimization/simulation model is designed for ultimate accessibility and efficiency. The optimization model uses the meta-heuristic approach, which has the capability to simultaneously search for multiple optimal solutions. The dynamics of the river are simulated by applying an unsteady flow-routing method. The rainfall-runoff simulation uses the National Weather Service NexRad gridded rainfall data, since it provides critical information regarding real storm events. The short-term rainfall-forecasting model utilizes a stochastic method. The reservoir-operation is simulated by a mass-balance approach. The optimization/simulation model offers more possible optimal solutions by using the Genetic Algorithm approach as opposed to traditional gradient methods that can only compute one optimal solution at a time. The optimization/simulation was developed for the 2010 flood event that occurred in the Cumberland River basin in Nashville, Tennessee. It revealed that the reservoir upstream of Nashville was more contained and that an optimal gate release schedule could have significantly decreased the floodwater levels in downtown Nashville. The model is for demonstrative purposes only but is perfectly suitable for real-world application.
ContributorsChe, Daniel C (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Committee member) / Wang, Zhihua (Committee member) / Lansey, Kevin (Committee member) / Wahlin, Brian (Committee member) / Arizona State University (Publisher)
Created2015