Matching Items (12)
Filtering by

Clear all filters

136400-Thumbnail Image.png
Description
The purpose of this paper is to provide a new and improved design method for the Formula Society of Automotive Engineering (FSAE) team. There are five tasks that I accomplish in this paper: 1. I describe how the FSAE team is currently designing their car. This allows the reader to

The purpose of this paper is to provide a new and improved design method for the Formula Society of Automotive Engineering (FSAE) team. There are five tasks that I accomplish in this paper: 1. I describe how the FSAE team is currently designing their car. This allows the reader to understand where the flaws might arise in their design method. 2. I then describe the key aspects of systems engineering design. This is the backbone of the method I am proposing, and it is important to understand the key concepts so that they can be applied to the FSAE design method. 3. I discuss what is available in the literature about race car design and optimization. I describe what other FSAE teams are doing and how that differs from systems engineering design. 4. I describe what the FSAE team at Arizona State University (ASU) should do to improve their approach to race car design. I go into detail about how the systems engineering method works and how it can and should be applied to the way they design their car. 5. I then describe how the team should implement this method because the method is useless if they do not implement it into their design process. I include an interview from their brakes team leader, Colin Twist, to give an example of their current method of design and show how it can be improved with the new method. This paper provides a framework for the FSAE team to develop their new method of design that will help them accomplish their overall goal of succeeding at the national competition.
ContributorsPickrell, Trevor Charles (Author) / Trimble, Steven (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136442-Thumbnail Image.png
Description
A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to

A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to edge-line deflection data extracted from digital imagery of experimentally loaded beams. In addition, an Ellipse Logistic Model (ELM) has been proposed, using L1-regularized logistic regression, to predict the impact of a knot on the displacement of a beam. By classifying a knot as severely positive or negative, vs. mildly positive or negative, ELM can classify knots that lead to large changes to beam deflection, while not over-emphasizing knots that may not be a problem. Using ELM with a regression-fit Young's Modulus on three-point bending of Douglass Fir, it is possible estimate the effects a knot will have on the shape of the resulting displacement curve.
Created2015-05
134380-Thumbnail Image.png
Description
The main objective of this project was to continue research and development of a building integrated solar thermoelectric generator (BISTEG). BISTEG is a promising renewable energy technology that is capable of generating electrical energy from the heat of concentrated sunlight. In order to perform R&D, the performance of different TEG

The main objective of this project was to continue research and development of a building integrated solar thermoelectric generator (BISTEG). BISTEG is a promising renewable energy technology that is capable of generating electrical energy from the heat of concentrated sunlight. In order to perform R&D, the performance of different TEG cells and TEG setups were tested and analyzed, proof-of-concepts and prototypes were built. and the performance of the proof-of-concepts and prototypes were tested and analyzed as well. In order to test different TEG cells and TEG setups, a TEG testing apparatus was designed and fabricated. The apparatus is capable of comparing the performance of TEGs with temperature differentials up to 200 degrees C. Along with a TEG testing apparatus, several proof-of-concepts and prototypes were completed. All of these were tested in order to determine the feasibility of the design. All three proof-of-concepts were only capable of producing a voltage output less than 300mV. The prototype, however, was capable of producing a max output voltage of 17 volts. Although the prototype outperformed all of the proof-of-concepts, optimizations to the design can continue to improve the output voltage. In order to do so, stacked TEG tests were performed. After performing the stacked TEG tests, it was determined that the use of stacked TEGs depended on the Fresnel lens chosen. If BISTEG were to use a point focused Fresnel lens, using a stack of TEGs could increase the power density. If BISTEG were to utilize a linear focused Fresnel lens, however, the TEGs should not be stacked. It would be more efficient to lay them out side by side. They can be stacked, however, if the energy density needs to be increased and the costs of the additional TEGs are not an issue.
ContributorsPark, Andrew (Author) / Seager, Thomas (Thesis director) / Margaret, Hinrichs (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133532-Thumbnail Image.png
Description
Carbon emissions have become a major concern since the turn of the century. This has increased the demand of hybrid vehicles in United States market. Hence, there is a need to make these vehicles more efficient. This thesis focuses on creating a thermal model that could be used for optimization

Carbon emissions have become a major concern since the turn of the century. This has increased the demand of hybrid vehicles in United States market. Hence, there is a need to make these vehicles more efficient. This thesis focuses on creating a thermal model that could be used for optimization of these vehicles. The project was accomplished in collaboration with EcoCar3, and the temperature data obtained from the model was compared with the experimental temperature data gathered from EcoCar's testing of the vehicle they built. The data obtained through this study demonstrates that the model was accurately able to predict thermal behavior of the electric motor and the high-voltage batteries in the vehicle. Therefore, this model could be used for optimization of the powertrain in a hybrid vehicle.
ContributorsMuthuvenkatesh, Nikhil (Author) / Mayyas, Abdel (Thesis director) / Patel, Jay (Committee member) / W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134817-Thumbnail Image.png
Description
For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective

For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective and reliable through their usage of motors, springs, cables, elastics, pneumatics and reaction loads. These mechanisms apply internal forces and reaction loads to the body. On the other hand, external forces are those caused by an external agent outside the system such as air, water, or magnets. A design for an exoskeleton using external forces has seldom been attempted by researchers. This thesis project focuses on the development of a Limb Gait Simulator based on a Pure External Force and has proven its effectiveness in generating torque on the human leg. The external force is generated through air propulsion using an Electric Ducted Fan (EDF) motor. Such a motor is typically used for remote control airplanes, but their applications can go beyond this. The objective of this research is to generate torque on the human leg through the control of the EDF engines thrust and the opening/closing of the reverse thruster flaps. This device qualifies as "assist as needed"; the user is entirely in control of how much assistance he or she may want. Static thrust values for the EDF engine are recorded using a thrust test stand. The product of the thrust (N) and the distance on the thigh (m) is the resulting torque. With the motor running at maximum RPM, the highest torque value reached was that of 3.93 (Nm). The motor EDF motor is powered by a 6S 5000 mAh LiPo battery. This torque value could be increased with the usage of a second battery connected in series, but this comes at a price. The designed limb gait simulator demonstrates that external forces, such as air, could have potential in the development of future rehabilitation devices.
ContributorsToulouse, Tanguy Nathan (Author) / Sugar, Thomas (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155806-Thumbnail Image.png
Description
In order for assistive mobile robots to operate in the same environment as humans, they must be able to navigate the same obstacles as humans do. Many elements are required to do this: a powerful controller which can understand the obstacle, and power-dense actuators which will be able to achieve

In order for assistive mobile robots to operate in the same environment as humans, they must be able to navigate the same obstacles as humans do. Many elements are required to do this: a powerful controller which can understand the obstacle, and power-dense actuators which will be able to achieve the necessary limb accelerations and output energies. Rapid growth in information technology has made complex controllers, and the devices which run them considerably light and cheap. The energy density of batteries, motors, and engines has not grown nearly as fast. This is problematic because biological systems are more agile, and more efficient than robotic systems. This dissertation introduces design methods which may be used optimize a multiactuator robotic limb's natural dynamics in an effort to reduce energy waste. These energy savings decrease the robot's cost of transport, and the weight of the required fuel storage system. To achieve this, an optimal design method, which allows the specialization of robot geometry, is introduced. In addition to optimal geometry design, a gearing optimization is presented which selects a gear ratio which minimizes the electrical power at the motor while considering the constraints of the motor. Furthermore, an efficient algorithm for the optimization of parallel stiffness elements in the robot is introduced. In addition to the optimal design tools introduced, the KiTy SP robotic limb structure is also presented. Which is a novel hybrid parallel-serial actuation method. This novel leg structure has many desirable attributes such as: three dimensional end-effector positioning, low mobile mass, compact form-factor, and a large workspace. We also show that the KiTy SP structure outperforms the classical, biologically-inspired serial limb structure.
ContributorsCahill, Nathan M (Author) / Sugar, Thomas (Thesis advisor) / Ren, Yi (Thesis advisor) / Holgate, Matthew (Committee member) / Berman, Spring (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
170871-Thumbnail Image.png
Description
A new uniaxial testing apparatus that has been proposed takes advantage of less costly methods such as 3D printing of tensile fixtures and image reference markers for accurate data acquisition. The purpose of this research is to find methods to improve the resolution, accuracy, and repeatability of this newly designed

A new uniaxial testing apparatus that has been proposed takes advantage of less costly methods such as 3D printing of tensile fixtures and image reference markers for accurate data acquisition. The purpose of this research is to find methods to improve the resolution, accuracy, and repeatability of this newly designed testing apparatus. The first phase of the research involved building a program that optimized the testing apparatus design depending on the sample being tested. It was found that the design program allowed for quick modifications on the apparatus in order to test a wide variety of samples. The second phase of research was conducted using Finite Elements to determine which sample geometry reduced the impact of misalignment error most. It found that a previously proposed design by Dr. Wonmo Kang when combined with the testing apparatus lead to a large reduction in misalignment errors.
ContributorsAyoub, Yaseen (Author) / Kang, Wonmo (Thesis director) / Kashani, Hamzeh (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-12
Description

This project compared two optimization-based formulations for solving multi-robot task allocation problems with tether constraints. The first approach, or the ”Iterative Method,” used the common multiple traveling salesman (mTSP) formulation and implemented an algorithm over the formulation to filter out solutions that failed to satisfy the tether constraint. The second

This project compared two optimization-based formulations for solving multi-robot task allocation problems with tether constraints. The first approach, or the ”Iterative Method,” used the common multiple traveling salesman (mTSP) formulation and implemented an algorithm over the formulation to filter out solutions that failed to satisfy the tether constraint. The second approach, named the ”Timing Formulation,” involved constructing a new formulation specifically designed account for robot timings, including the tether constraint in the formulation itself. The approaches were tested against each other in 10-city simulations and the results were compared. The Iterative Method could provide answers in 1- and 2-norm variations quickly, but its mTSP model formulation broke down and became infeasible at low city numbers. The 1-norm Timing Formulation quickly and reliably produced solutions but faced high computation times in its 2-norm manifestation. Ultimately, while the Timing Formulation is a more optimal method for solving tether-constrained task allocation problems, its reliance on the 1-norm for low computation times causes it to sacrifice some realism.

ContributorsGoodwin, Walter (Author) / Yong, Sze Zheng (Thesis director) / Grewal, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164614-Thumbnail Image.png
ContributorsGoodwin, Walter (Author) / Yong, Sze Zheng (Thesis director) / Grewal, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05