Matching Items (4)
Filtering by

Clear all filters

134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155806-Thumbnail Image.png
Description
In order for assistive mobile robots to operate in the same environment as humans, they must be able to navigate the same obstacles as humans do. Many elements are required to do this: a powerful controller which can understand the obstacle, and power-dense actuators which will be able to achieve

In order for assistive mobile robots to operate in the same environment as humans, they must be able to navigate the same obstacles as humans do. Many elements are required to do this: a powerful controller which can understand the obstacle, and power-dense actuators which will be able to achieve the necessary limb accelerations and output energies. Rapid growth in information technology has made complex controllers, and the devices which run them considerably light and cheap. The energy density of batteries, motors, and engines has not grown nearly as fast. This is problematic because biological systems are more agile, and more efficient than robotic systems. This dissertation introduces design methods which may be used optimize a multiactuator robotic limb's natural dynamics in an effort to reduce energy waste. These energy savings decrease the robot's cost of transport, and the weight of the required fuel storage system. To achieve this, an optimal design method, which allows the specialization of robot geometry, is introduced. In addition to optimal geometry design, a gearing optimization is presented which selects a gear ratio which minimizes the electrical power at the motor while considering the constraints of the motor. Furthermore, an efficient algorithm for the optimization of parallel stiffness elements in the robot is introduced. In addition to the optimal design tools introduced, the KiTy SP robotic limb structure is also presented. Which is a novel hybrid parallel-serial actuation method. This novel leg structure has many desirable attributes such as: three dimensional end-effector positioning, low mobile mass, compact form-factor, and a large workspace. We also show that the KiTy SP structure outperforms the classical, biologically-inspired serial limb structure.
ContributorsCahill, Nathan M (Author) / Sugar, Thomas (Thesis advisor) / Ren, Yi (Thesis advisor) / Holgate, Matthew (Committee member) / Berman, Spring (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
171733-Thumbnail Image.png
Description
Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design

Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design and crash testing, and mapping interactions of the human body. An accurate model can aid in the design of a system to ensure the system is effective and meets specified performance criteria when built. A model may have many design parameters, such as geometrical constraints and component mechanical properties, or controller parameters if the system uses an external controller. Varying these parameters and rerunning analyses by hand to find an ideal design can be time consuming for models that take hours or days to run. To reduce the amount of time required to find a set of parameters that produces a desired performance, optimization is necessary. Many papers have discussed methods for optimizing rigid and flexible MBD models, and separately their controllers, using both gradient-based and gradient-free algorithms. However, these optimization methods have not been used to optimize full-scale MBD models and their controllers simultaneously. This thesis presents a method for co-optimizing an MBD model and controller that allows for the flexibility to find model and controller-based solutions for systems with tightly coupled parameters. Specifically, the optimization is performed on a quadrotor drone MBD model undergoing disturbance from a slung load and its position controller to meet specified position error performance criteria. A gradient-free optimization algorithm and multiple objective approach is used due to the many local optima from the tradeoffs between the model and controller parameters. The thesis uses nine different quadrotor cases with three different position error formulations. The results are used to determine the effectiveness of the optimization and the ability to converge on a single optimal design. After reviewing the results, the optimization limitations are discussed as well as the ability to transition the optimization to work with different MBD models and their controllers.
ContributorsGambatese, Marcus (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Inoyama, Daisaku (Committee member) / Arizona State University (Publisher)
Created2022
158221-Thumbnail Image.png
Description
The problem of modeling and controlling the distribution of a multi-agent system has recently evolved into an interdisciplinary effort. When the agent population is very large, i.e., at least on the order of hundreds of agents, it is important that techniques for analyzing and controlling the system scale well with

The problem of modeling and controlling the distribution of a multi-agent system has recently evolved into an interdisciplinary effort. When the agent population is very large, i.e., at least on the order of hundreds of agents, it is important that techniques for analyzing and controlling the system scale well with the number of agents. One scalable approach to characterizing the behavior of a multi-agent system is possible when the agents' states evolve over time according to a Markov process. In this case, the density of agents over space and time is governed by a set of difference or differential equations known as a {\it mean-field model}, whose parameters determine the stochastic control policies of the individual agents. These models often have the advantage of being easier to analyze than the individual agent dynamics. Mean-field models have been used to describe the behavior of chemical reaction networks, biological collectives such as social insect colonies, and more recently, swarms of robots that, like natural swarms, consist of hundreds or thousands of agents that are individually limited in capability but can coordinate to achieve a particular collective goal.

This dissertation presents a control-theoretic analysis of mean-field models for which the agent dynamics are governed by either a continuous-time Markov chain on an arbitrary state space, or a discrete-time Markov chain on a continuous state space. Three main problems are investigated. First, the problem of stabilization is addressed, that is, the design of transition probabilities/rates of the Markov process (the agent control parameters) that make a target distribution, satisfying certain conditions, invariant. Such a control approach could be used to achieve desired multi-agent distributions for spatial coverage and task allocation. However, the convergence of the multi-agent distribution to the designed equilibrium does not imply the convergence of the individual agents to fixed states. To prevent the agents from continuing to transition between states once the target distribution is reached, and thus potentially waste energy, the second problem addressed within this dissertation is the construction of feedback control laws that prevent agents from transitioning once the equilibrium distribution is reached. The third problem addressed is the computation of optimized transition probabilities/rates that maximize the speed at which the system converges to the target distribution.
ContributorsBiswal, Shiba (Author) / Berman, Spring (Thesis advisor) / Fainekos, Georgios (Committee member) / Lanchier, Nicolas (Committee member) / Mignolet, Marc (Committee member) / Peet, Matthew (Committee member) / Arizona State University (Publisher)
Created2020