Matching Items (3)
Filtering by

Clear all filters

152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
153915-Thumbnail Image.png
Description
Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.
ContributorsIlkturk, Utku (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Renaut, Rosemary (Committee member) / Armbruster, Dieter (Committee member) / Arizona State University (Publisher)
Created2015
157571-Thumbnail Image.png
Description
Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development.

Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development. This thesis attempts to create a chance-constrained knapsack optimization model, which the breeder can use to make better decisions about seed progression and help reduce the levels of risk in their selections. The model’s objective is to select seed varieties out of a larger pool of varieties and maximize the average yield of the “knapsack” based on meeting some risk criteria. Two models are created for different cases. First is the risk reduction model which seeks to reduce the risk of getting a bad yield but still maximize the total yield. The second model considers the possibility of adverse environmental effects and seeks to mitigate the negative effects it could have on the total yield. In practice, breeders can use these models to better quantify uncertainty in selecting seed varieties
ContributorsOzcan, Ozkan Meric (Author) / Armbruster, Dieter (Thesis advisor) / Gel, Esma (Thesis advisor) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2019