Matching Items (2)
Filtering by

Clear all filters

152506-Thumbnail Image.png
Description
In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data sets, the bond energy algorithm to find finer patterns and anomalies through contrast, multi-dimensional scaling, flow lines, user guided clustering, and row-column ordering. User input is applied on precomputed data sets to provide for real time interaction. General applicability of the techniques are tested against industrial trade, social networking, financial, and sparse data sets of varying dimensionality.
ContributorsHayden, Thomas (Author) / Maciejewski, Ross (Thesis advisor) / Wang, Yalin (Committee member) / Runger, George C. (Committee member) / Mack, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2014
161459-Thumbnail Image.png
Description
This paper introduces an application space of Power over Ethernet to Universal Serial Bus (USB) Power Delivery, and develops 3 different flyback approaches to a 45 Watt solution in the space. The designs of Fixed Frequency Flyback, Quasi-Resonant Flyback, and Active Clamp Flyback are developed for the application with 37

This paper introduces an application space of Power over Ethernet to Universal Serial Bus (USB) Power Delivery, and develops 3 different flyback approaches to a 45 Watt solution in the space. The designs of Fixed Frequency Flyback, Quasi-Resonant Flyback, and Active Clamp Flyback are developed for the application with 37 Volts (V) to 57 V Direct Current (DC) input voltage and 5 V, 9 V, 15 V, and 20 V output, and results are examined for the given specifications. Implementation based concerns are addressed for each topology during the design process. The systems are proven and tested for efficiency, thermals, and output voltage ripple across the operation range. The topologies are then compared for a cost and benefit analysis and their highlights are identified to showcase each systems prowess.
ContributorsNasir, Anthony Michael (Author) / Ayyanar, Raja (Thesis advisor) / Lei, Qin (Committee member) / Hari, Ajay (Committee member) / Arizona State University (Publisher)
Created2021