Matching Items (3)
Filtering by

Clear all filters

156857-Thumbnail Image.png
Description
Previous research from Rajsic et al. (2015, 2017) suggests that a visual form of confirmation bias arises during visual search for simple stimuli, under certain conditions, wherein people are biased to seek stimuli matching an initial cue color even when this strategy is not optimal. Furthermore, recent research from our

Previous research from Rajsic et al. (2015, 2017) suggests that a visual form of confirmation bias arises during visual search for simple stimuli, under certain conditions, wherein people are biased to seek stimuli matching an initial cue color even when this strategy is not optimal. Furthermore, recent research from our lab suggests that varying the prevalence of cue-colored targets does not attenuate the visual confirmation bias, although people still fail to detect rare targets regardless of whether they match the initial cue (Walenchok et al. under review). The present investigation examines the boundary conditions of the visual confirmation bias under conditions of equal, low, and high cued-target frequency. Across experiments, I found that: (1) People are strongly susceptible to the low-prevalence effect, often failing to detect rare targets regardless of whether they match the cue (Wolfe et al., 2005). (2) However, they are still biased to seek cue-colored stimuli, even when such targets are rare. (3) Regardless of target prevalence, people employ strategies when search is made sufficiently burdensome with distributed items and large search sets. These results further support previous findings that the low-prevalence effect arises from a failure to perceive rare items (Hout et al., 2015), while visual confirmation bias is a bias of attentional guidance (Rajsic et al., 2015, 2017).
ContributorsWalenchok, Stephen Charles (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Hout, Michael C (Committee member) / McClure, Samuel M. (Committee member) / Arizona State University (Publisher)
Created2018
155745-Thumbnail Image.png
Description
In this study, the oppositional processes theory was proposed to suggest that reliance on semantic and episodic memory systems hinder originality during idea generation for divergent thinking tasks that are generally used to assess creative potential. In order to investigate the proposed oppositional processes theory, three experiments that manipulated the

In this study, the oppositional processes theory was proposed to suggest that reliance on semantic and episodic memory systems hinder originality during idea generation for divergent thinking tasks that are generally used to assess creative potential. In order to investigate the proposed oppositional processes theory, three experiments that manipulated the memory accessibility in participants during the alternative uses tasks were conducted. Experiment 1 directly instructed participants to either generate usages based on memory or not from memory; Experiment 2 provided participants with object cues that were either very common or very rare in daily life (i.e., bottle vs. canteen); Experiment 3 replicated the same manipulation from Experiment 2 with much longer generation time (10 minutes in Experiment 2 vs. 30 minutes in Experiment 3). The oppositional processes theory predicted that participants who had less access to direct and unaltered usages (i.e., told to not use memory, were given rare cues, or were outputting items later in the generation period) during the task would be more creative. Results generally supported the predictions in Experiments 1 and 2 where participants from conditions which limited their access to memory generated more novel usages that were considered more creative by independent coders. Such effects were less prominent in Experiment 3 with extended generation time but the trends remained the same.
ContributorsXu, Dongchen (Author) / Brewer, Gene (Thesis advisor) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2017
161818-Thumbnail Image.png
Description
Color perception has been widely studied and well modeled with respect to combining visible electromagnetic frequencies, yet new technology provides the means to better explore and test novel temporal frequency characteristics of color perception. Experiment 1 tests how reliably participants categorize static spectral rainbow colors, which can be a useful

Color perception has been widely studied and well modeled with respect to combining visible electromagnetic frequencies, yet new technology provides the means to better explore and test novel temporal frequency characteristics of color perception. Experiment 1 tests how reliably participants categorize static spectral rainbow colors, which can be a useful tool for efficiently identifying those with functional dichromacy, trichromacy, and tetrachromacy. The findings confirm that all individuals discern the four principal opponent process colors, red, yellow, green, and blue, with normal and potential tetrachromats seeing more distinct colors than color blind individuals. Experiment 2 tests the moving flicker fusion rate of the central electromagnetic frequencies within each color category found in Experiment 1 as a test of the Where system. It then compares this to the maximum temporal processing rate for discriminating direction of hue change with colors displayed serially as a test of the What system. The findings confirm respective processing thresholds of about 20 Hz for Where and 2-7 Hz for What processing systems. Experiment 3 tests conditions that optimize false colors based on the spinning Benham’s Top illusion. Findings indicate the same four principal colors emerge as in Experiment 1, but at low saturation levels for trichromats that diminish further for dichromats. Taken together, the three experiments provide an overview of the common categorical boundaries and temporal processing limits of human color vision.
ContributorsKrynen, Richard Chandler (Author) / Mcbeath, Michael K (Thesis advisor) / Homa, Donald (Committee member) / Newman, Nathan (Committee member) / Stone, Greg (Committee member) / Arizona State University (Publisher)
Created2021