Matching Items (3)
Filtering by

Clear all filters

151888-Thumbnail Image.png
Description
Knowing that disorder is related to crime, it has become essential for criminologists to understand how and why certain individuals perceive disorder. Using data from the Perceptions of Neighborhood Disorder and Interpersonal Conflict Project, this study uses a fixed photograph of a neighborhood, to assess whether individuals "see" disorder cues.

Knowing that disorder is related to crime, it has become essential for criminologists to understand how and why certain individuals perceive disorder. Using data from the Perceptions of Neighborhood Disorder and Interpersonal Conflict Project, this study uses a fixed photograph of a neighborhood, to assess whether individuals "see" disorder cues. A final sample size of n=815 respondents were asked to indicate if they saw particular disorder cues in the photograph. The results show that certain personal characteristics do predict whether an individual sees disorder. Because of the experimental design, results are a product of the individual's personal characteristics, not of the respondent's neighborhood. These findings suggest that the perception of disorder is not as clear cut as once thought. Future research should explore what about these personal characteristics foster the perception of disorder when it is not present, as well as, how to fight disorder in neighborhoods when perception plays such a substantial role.
ContributorsScott, Christopher (Author) / Wallace, Danielle (Thesis advisor) / Katz, Charles (Committee member) / Ready, Justin (Committee member) / Arizona State University (Publisher)
Created2013
152881-Thumbnail Image.png
Description
Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense

Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense of digit position with motor commands responsible for generating digit forces and placement. However, the mechanisms underlying the phenomenon of digit position-force coordination are not well understood. This dissertation addresses this question through three experiments that are based on psychophysics and object lifting tasks. It was found in psychophysics tasks that sensed relative digit position was accurately reproduced when sensorimotor transformations occurred with larger vertical fingertip separations, within the same hand, and at the same hand posture. The results from a follow-up experiment conducted in the same digit position-matching task while generating forces in different directions reveal a biased relative digit position toward the direction of force production. Specifically, subjects reproduced the thumb CoP higher than the index finger CoP when vertical digit forces were directed upward and downward, respectively, and vice versa. It was also found in lifting tasks that the ability to discriminate the relative digit position prior to lifting an object and modulate digit forces to minimize object roll as a function of digit position are robust regardless of whether motor commands for positioning the digits on the object are involved. These results indicate that the erroneous sensorimotor transformations of relative digit position reported here must be compensated during dexterous manipulation by other mechanisms, e.g., visual feedback of fingertip position. Furthermore, predicted sensory consequences derived from the efference copy of voluntary motor commands to generate vertical digit forces may override haptic sensory feedback for the estimation of relative digit position. Lastly, the sensorimotor transformations from haptic feedback to digit force modulation to position appear to be facilitated by motor commands for active digit placement in manipulation.
ContributorsShibata, Daisuke (Author) / Santello, Marco (Thesis advisor) / Dounskaia, Natalia (Committee member) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / McBeath, Michael (Committee member) / Arizona State University (Publisher)
Created2014
151390-Thumbnail Image.png
Description
Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on a stored internal representation of the body parts in space.

Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on a stored internal representation of the body parts in space. However, relatively little is known about this internal representation of arm position. To this end, I developed a method to map proprioceptive estimates of hand location across a 2-d workspace. In this task, I moved each subject's hand to a target location while the subject's eyes were closed. After returning the hand, subjects opened their eyes to verbally report the location of where their fingertip had been. Then, I reconstructed and analyzed the spatial structure of the pattern of estimation errors. In the first couple of experiments I probed the structure and stability of the pattern of errors by manipulating the hand used and tactile feedback provided when the hand was at each target location. I found that the resulting pattern of errors was systematically stable across conditions for each subject, subject-specific, and not uniform across the workspace. These findings suggest that the observed structure of pattern of errors has been constructed through experience, which has resulted in a systematically stable internal representation of arm location. Moreover, this representation is continuously being calibrated across the workspace. In the next two experiments, I aimed to probe the calibration of this structure. To this end, I used two different perturbation paradigms: 1) a virtual reality visuomotor adaptation to induce a local perturbation, 2) and a standard prism adaptation paradigm to induce a global perturbation. I found that the magnitude of the errors significantly increased to a similar extent after each perturbation. This small effect indicates that proprioception is recalibrated to a similar extent regardless of how the perturbation is introduced, suggesting that sensory and motor changes may be two independent processes arising from the perturbation. Moreover, I propose that the internal representation of arm location might be constructed with a global solution and not capable of local changes.
ContributorsRincon Gonzalez, Liliana (Author) / Helms Tillery, Stephen I (Thesis advisor) / Buneo, Christopher A (Thesis advisor) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2012