Matching Items (4)
Filtering by

Clear all filters

133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

This study investigates the effects of familiarity and the size of a novel object on perception of depth. Familiar size is a visual depth cue that provides information about the distance of an object. This project explores if the familiar size illusion is a result of an automatic perceptual process

This study investigates the effects of familiarity and the size of a novel object on perception of depth. Familiar size is a visual depth cue that provides information about the distance of an object. This project explores if the familiar size illusion is a result of an automatic perceptual process or an intellectual thought process. This data was collected in two phases, a familiarization phase and a testing phase. The experimental participants were familiarized for 30 seconds with a novel object, while the control group was not shown any objects prior to presentation of test objects. The novel test stimuli were constructed in 5 sizes and participants in the familiar group were familiarized with the medium size object. Participants were then asked to indicate the perceived distance of different sized objects by moving a rod with a pointer at the end to match the distance. The smaller comparison objects subtended visual angles that participants had not previously experienced, while larger comparison objects produced a larger visual angle than the participants had seen during the familiarization phase. The testing phase was identical for both familiar and unfamiliar control groups. Apparent distance was influenced by the size of the objects. Larger objects were judged to be closer than the smaller objects. Participants not familiarized showed smaller effects of stimulus size than the familiarized group. The effect of familiarity was not significant for the smaller stimuli but was very significant for the larger stimuli. The results were not consistent with the cognitive theory which argues that familiar size is a result of a conscious thought process. These outcomes are predicted under the model of familiar size being an automatic perceptual process.

ContributorsLawrence, Sahana (Author) / Yonas, Albert (Thesis director) / McBeath, Michael (Committee member) / Fabricius, William (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description
This research dives into the media’s influence, population tracking, new conservation methods, and previous studies to support the thesis that creating a positive public perception of the animals will help reduce shark finning and overfishing. Provisions and solutions provide inspiration for what we can do to reduce the overfishing and

This research dives into the media’s influence, population tracking, new conservation methods, and previous studies to support the thesis that creating a positive public perception of the animals will help reduce shark finning and overfishing. Provisions and solutions provide inspiration for what we can do to reduce the overfishing and finning of sharks.
ContributorsMinhinnick, Tess (Author) / Chew, Matthew (Thesis director) / Lyon, Cassandra (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-12