Matching Items (5)
Filtering by

Clear all filters

133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
131944-Thumbnail Image.png
Description
Background: In the United States, approximately 50,000 teens with Autism Spectrum Disorder (ASD) age into adulthood every year (Shattuck et al., 2012). A hallmark symptom of ASD includes pronounced difficulties in social interactions and verbal and nonverbal communication (Lai, Lombardo, & Baron-Cohen, 2014). These social cognition difficulties consist of difficulties

Background: In the United States, approximately 50,000 teens with Autism Spectrum Disorder (ASD) age into adulthood every year (Shattuck et al., 2012). A hallmark symptom of ASD includes pronounced difficulties in social interactions and verbal and nonverbal communication (Lai, Lombardo, & Baron-Cohen, 2014). These social cognition difficulties consist of difficulties interpreting social cues, employing appropriate adaptive behavioral responses in various social contexts, as well as the ability to interpret emotions and mental states of others, known as theory of mind (TOM; Premack & Woodruff, 1978). In neurotypical (NT) adults, women perform better on social cognition tasks and difficulties become more prevalent with age, however little is known how sex differences and aging may impact social cognition in adults with ASD (Carstensen, Fung, & Charles 2003).

Objective: This research intended to characterize the influence of sex and age on social cognition in adults with ASD using an adult sample. We hypothesized Reading the Mind in the Eyes (RME) scores would be lower in adults with ASD, with a stronger relationship between decreasing performance aging effects compared to NTs. Additionally, we hypothesized deficits would be more severe in in males with ASD compared to females with ASD.

Methods: The RME task was administered to 181 adults to quantify ToM abilities. The participants consisted of 100 adults with ASD (69 males, 32 females; age range: 18-71, mean=39.45±1.613) and matched 81 NT adults (47 males, 34 females; age range: 18-70, mean=41.51±1.883). Multiple regression analyses examined interactions between diagnosis and age, diagnosis and sex, and diagnosis by age by sex. Exploratory within group analyses assessed 1) sex differences using ANCOVA, and 2) associations with age using Pearson correlation in SPSS.

Results: We found that NT adults performed better on the RME task than adults with ASD. Worse performance on the RME task correlated with greater age for the NT, but not ASD. Additionally, no influence of sex on RME scores was identified.

Discussion: These results are consistent with other studies indicate social cognition deficits in adults with ASD compared to NT adults. Additionally, we replicated findings that suggest ToM performance declines with age in NT adults. Fewer social relationships, smaller social networks, and reduced social engagement have been associated with aging in both NTs and individuals with ASD (Pratt & Norris, 1994). However, our cross-sectional sample suggests ToM abilities may not decline with age in adults with ASD as hypothesized. Longitudinal studies are needed to corroborate these findings. Further developments in this line of research may inform novel interventions tailored toward the growing population of adults with ASD. Ultimately, our research aims to improve quality of life across the lifespan for an already vulnerable population.
ContributorsRogers, Carly (Author) / Braden, Blair (Thesis director) / Roberts, Nicole (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131928-Thumbnail Image.png
Description
Motor skill acquisition, the process by which individuals practice and consolidate
movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from
rodents and songbirds suggests that there is a transition away from cortical execution. Recent
evidence indicates that

Motor skill acquisition, the process by which individuals practice and consolidate
movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from
rodents and songbirds suggests that there is a transition away from cortical execution. Recent
evidence indicates that the reticulospinal system plays an important role in integration and
retention of learned motor skills. The brainstem has known age-rated deficits including cell
shrinkage & death. Given the role of the reticulospinal system in skill acquisition and older
adult’s poor capacity to learn, it begs the question: are delays in the reticulospinal system
associated with older adult’s poor capacity to learn?
Our objective was to evaluate if delays in the reticulospinal system (measured via the
startle reflex) and corticospinal system (measured via Transcranial Magnetic Stimulation (TMS) are correlated to impairment of motor learning in older adults. We found that individuals with fast startle responses resembling those of younger adults show the most improvement and retention while individuals with delayed startle responses show the least. We also found that there was no relationship between MEP latencies and improvement and retention. Moreover, linear regression analysis indicated that startle onset latency exists within a continuum of learning outcomes suggesting that startle onset latency may be a sensitive measure to predict learning deficits in older adults. As there exists no method to determine an individual’s relative learning capacity, these results open the possibility of startle, which is an easy and inexpensive behavioral measure and can be used to determine learning deficits in older adults to facilitate better dosing during rehabilitation therapy.
ContributorsRangarajan, Vishvak (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132702-Thumbnail Image.png
Description
Motor skill acquisition, the process by which individuals practice and consolidate movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from rodents and songbirds suggests that there is a transition away from cortical execution. Recent

Motor skill acquisition, the process by which individuals practice and consolidate movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from rodents and songbirds suggests that there is a transition away from cortical execution. Recent evidence indicates that the reticulospinal system plays an important role in integration and retention of learned motor skills. The brainstem has known age-rated deficits including cell shrinkage & death. Given the role of the reticulospinal system in skill acquisition and older adult’s poor capacity to learn, it begs the question: are delays in the reticulospinal system associated with older adult’s poor capacity to learn?
Our objective was to evaluate if delays in the reticulospinal system (measured via the startle reflex) are correlated to impairment of motor learning in older adults. We found that individuals with fast startle responses resembling those of younger adults show the most learning and retention of that learning while individuals with delayed startle responses show the least. Moreover, linear regression analysis indicated that startle onset latency exists within a continuum of learning outcomes suggesting that startle onset latency may be a sensitive measure to predict learning deficits in older adults. As there exists no method to determine an individual’s relative learning capacity, these results open the possibility of startle, which is an easy and inexpensive behavioral measure, being used to predict learning deficits in older adults to facilitate better dosing during rehabilitation therapy.
ContributorsSchreiber, Joseph James (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05