Matching Items (2)
Filtering by

Clear all filters

136804-Thumbnail Image.png
Description
The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook

The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook design techniques to discover how applicable published interface design concepts are in practice. Four variations of a software package were deployed to end users. Each variation contained different design techniques. Surveyed users responded positively to interface design practices that were consistent and easy to learn. This followed textbook expectations. Users however responded poorly to customization options, an important feature according to textbook material. The study made conservative changes to the four interface variations provided to end-users. A more liberal approach may have yielded additional results.
ContributorsSmith, Andrew David (Author) / Nakamura, Mutsumi (Thesis director) / Gottesman, Aaron (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
154868-Thumbnail Image.png
Description
Robots are becoming an important part of our life and industry. Although a lot of robot control interfaces have been developed to simplify the control method and improve user experience, users still cannot control robots comfortably. With the improvements of the robot functions, the requirements of universality and ease of

Robots are becoming an important part of our life and industry. Although a lot of robot control interfaces have been developed to simplify the control method and improve user experience, users still cannot control robots comfortably. With the improvements of the robot functions, the requirements of universality and ease of use of robot control interfaces are also increasing. This research introduces a graphical interface for Linear Temporal Logic (LTL) specifications for mobile robots. It is a sketch based interface built on the Android platform which makes the LTL control interface more friendly to non-expert users. By predefining a set of areas of interest, this interface can quickly and efficiently create plans that satisfy extended plan goals in LTL. The interface can also allow users to customize the paths for this plan by sketching a set of reference trajectories. Given the custom paths by the user, the LTL specification and the environment, the interface generates a plan balancing the customized paths and the LTL specifications. We also show experimental results with the implemented interface.
ContributorsWei, Wei (Author) / Fainekos, Georgios (Thesis advisor) / Amor, Hani Ben (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2016