Matching Items (2)
Filtering by

Clear all filters

157781-Thumbnail Image.png
Description
Virtualization technologies are widely used in modern computing systems to deliver shared resources to heterogeneous applications. Virtual Machines (VMs) are the basic building blocks for Infrastructure as a Service (IaaS), and containers are widely used to provide Platform as a Service (PaaS). Although it is generally believed that containers have

Virtualization technologies are widely used in modern computing systems to deliver shared resources to heterogeneous applications. Virtual Machines (VMs) are the basic building blocks for Infrastructure as a Service (IaaS), and containers are widely used to provide Platform as a Service (PaaS). Although it is generally believed that containers have less overhead than VMs, an important tradeoff which has not been thoroughly studied is the effectiveness of performance isolation, i.e., to what extent the virtualization technology prevents the applications from affecting each other’s performance when they share the resources using separate VMs or containers. Such isolation is critical to provide performance guarantees for applications consolidated using VMs or containers. This paper provides a comprehensive study on the performance isolation for three widely used virtualization technologies, full virtualization, para-virtualization, and operating system level virtualization, using Kernel-based Virtual Machine (KVM), Xen, and Docker containers as the representative implementations of these technologies. The results show that containers generally have less performance loss (up to 69% and 41% compared to KVM and Xen in network latency experiments, respectively) and better scalability (up to 83.3% and 64.6% faster compared to KVM and Xen when increasing number of VMs/containers to 64, respectively), but they also suffer from much worse isolation (up to 111.8% and 104.92% slowdown compared to KVM and Xen when adding disk stress test in TeraSort experiments under full usage (FU) scenario, respectively). The resource reservation tools help virtualization technologies achieve better performance (up to 85.9% better disk performance in TeraSort under FU scenario), but cannot help them avoid all impacts.
ContributorsHuang, Zige (Author) / Zhao, Ming (Thesis advisor) / Sarwat, Mohamed (Committee member) / Wang, Ruoyu (Committee member) / Arizona State University (Publisher)
Created2019
131863-Thumbnail Image.png
Description
Quantum computers provide a promising future, where computationally difficult
problems can be executed exponentially faster than the current classical computers we have in use today. While there is tremendous research and development in the creation of quantum computers, there is a fundamental challenge that exists in the quantum world. Due to

Quantum computers provide a promising future, where computationally difficult
problems can be executed exponentially faster than the current classical computers we have in use today. While there is tremendous research and development in the creation of quantum computers, there is a fundamental challenge that exists in the quantum world. Due to the fragility of the quantum world, error correction methods have originated since 1995 to tackle the giant problem. Since the birth of the idea that these powerful computers can crunch and process numbers beyond the limit of the current computers, there exist several mathematical error correcting codes that could potentially give the required stability in the fragile and fault tolerant quantum world. While there has been a multitude of possible solutions, there is no one single error correcting code that is the key to solving the problem. Almost every solution presented has shared with it a limiting factor or an issue that prevents it from becoming the breakthrough that is desperately needed.

This paper gives an introductory knowledge of what is the quantum world and why there is a need for error correcting topologies. Finally, it introduces one recent topology that could be added to the list of possible solutions to this central problem. Rather than focusing on the mathematical frameworks, the paper introduces the main concepts so that most readers even outside the major field of computer science can understand what the main problem is and how this topology attempts to solve it.
ContributorsAhmed, Umer (Author) / Colbourn, Charles (Thesis director) / Zhao, Ming (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05