Matching Items (6)
Filtering by

Clear all filters

153533-Thumbnail Image.png
Description
As the robotic industry becomes increasingly present in some of the more extreme environments such as the battle field, disaster sites or extraplanetary exploration, it will be necessary to provide locomotive niche strategies that are optimal to each terrain. The hopping gait has been well studied in robotics and

As the robotic industry becomes increasingly present in some of the more extreme environments such as the battle field, disaster sites or extraplanetary exploration, it will be necessary to provide locomotive niche strategies that are optimal to each terrain. The hopping gait has been well studied in robotics and proven to be a potential method to fit some of these niche areas. There have been some difficulties in producing terrain following controllers that maintain robust, steady state, which are disturbance resistant.

The following thesis will discuss a controller which has shown the ability to produce these desired properties. A phase angle oscillator controller is shown to work remarkably well, both in simulation and with a one degree of freedom robotic test stand.

Work was also done with an experimental quadruped with less successful results, but which did show potential for stability. Additional work is suggested for the quadruped.
ContributorsNew, Philip Wesley (Author) / Sugar, Thomas G. (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Redkar, Sangram (Committee member) / Arizona State University (Publisher)
Created2015
156390-Thumbnail Image.png
Description
This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users.

This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users. This wearable system equips the user with an additional limb made of soft materials that can be controlled to produce complex three-dimensional motion in space, like its biological counterparts with hydrostatic muscles. Similar to the elephant trunk, the SPL is able to manipulate objects using various end effectors, such as suction adhesion or a soft grasper, and can also wrap its entire length around objects for manipulation. User control of the limb is demonstrated using multiple user intent detection modalities. Further, the performance of the SPL studied by testing its capability to interact safely and closely around a user through a spatial mobility test. Finally, the limb’s ability to assist the user is explored through multitasking scenarios and pick and place tests with varying mounting locations of the arm around the user’s body. The results of these assessments demonstrate the SPL’s ability to safely interact with the user while exhibiting promising performance in assisting the user with a wide variety of tasks, in both work and general living scenarios.
ContributorsVale, Nicholas Marshall (Author) / Polygerinos, Panagiotis (Thesis advisor) / Zhang, Wenlong (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
134393-Thumbnail Image.png
Description
Walking ability is a complex process that is essential to humans, critical for performing a range of everyday tasks and enables a healthy, independent lifestyle. Human gait has evolved to be robust, adapting to a wide range of external stimuli, including variable walking surface compliance. Unfortunately, many people suffer from

Walking ability is a complex process that is essential to humans, critical for performing a range of everyday tasks and enables a healthy, independent lifestyle. Human gait has evolved to be robust, adapting to a wide range of external stimuli, including variable walking surface compliance. Unfortunately, many people suffer from impaired gait as a result of conditions such as stroke. For these individuals, recovering their gait is a priority and a challenge. The ASU Variable Stiffness Treadmill (VST) is a device that is able to the change its surface compliance through its unique variable stiffness mechanism. By doing this, the VST can be used to investigate gait and has potential as a rehabilitation tool. The objective of this research is to design a variable damping mechanism for the VST, which addresses the need to control effective surface damping, the only form of mechanical impedance that the VST does not currently control. Thus, this project will contribute toward the development of the Variable Impedance Treadmill (VIT), which will encompass a wider range of variable surface compliance and enable all forms of impedance to be con- trolled for the first time. To achieve this, the final design of the mechanism will employ eddy current damping using several permanent magnets mounted to the treadmill and a large copper plate stationed on the ground. Variable damping is obtained by using lead screw mechanisms to remove magnets from acting on the copper plate, which effectively eliminates their effect on damping and changes the overall treadmill surface damping. Results from experimentation validate the mechanism's ability to provide variable damping to the VST. A model for effective surface damping is generated based on open-loop characterization experiments and is generalized for future experimental setups. Overall, this project progresses to the development of the VIT and has potential applications in walking surface simulation, gait investigation, and robot-assisted rehabilitation technology.
ContributorsFou, Linda Guo (Author) / Artemiadis, Panagiotis (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154699-Thumbnail Image.png
Description
Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from

Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from surveil- lance and reconnaissance to agriculture and large area mapping. Although in most applications single quadrotors are used, there is an increasing interest in architectures controlling multiple quadrotors executing a collaborative task. This thesis introduces a new concept of control involving more than one quadrotors, according to which two quadrotors can be physically coupled in mid-flight. This concept equips the quadro- tors with new capabilities, e.g. increased payload or pursuit and capturing of other quadrotors. A comprehensive simulation of the approach is built to simulate coupled quadrotors. The dynamics and modeling of the coupled system is presented together with a discussion regarding the coupling mechanism, impact modeling and additional considerations that have been investigated. Simulation results are presented for cases of static coupling as well as enemy quadrotor pursuit and capture, together with an analysis of control methodology and gain tuning. Practical implementations are introduced as results show the feasibility of this design.
ContributorsLarsson, Daniel (Author) / Artemiadis, Panagiotis (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2016
154718-Thumbnail Image.png
Description
Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of

Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of human gait is the ability to adjust in order to accommodate varying surface grades. Typical approaches to investigating this gait function focus on incline and decline surface angles, but most experiments fail to address the effects of surface grades that cause ankle inversion and eversion. There have been several studies of ankle angle perturbation over wider ranges of grade orientations in static conditions; however, these studies do not account for effects during the gait cycle. Furthermore, contemporary studies on this topic neglect critical sources of unnatural stimulus in the design of investigative technology. It is hypothesized that the investigation of ankle angle perturbations in the frontal plane, particularly in the context of inter-leg coordination mechanisms, results in a more complete characterization of the effects of surface grade on human gait mechanisms. This greater understanding could potentially lead to significant applications in gait rehabilitation, especially for individuals who suffer from impairment as a result of stroke. A wearable pneumatic device was designed to impose inversion and eversion perturbations on the ankle through simulated surface grade changes. This prototype device was fabricated, characterized, and tested in order to assess its effectiveness. After testing and characterizing this device, it was used in a series of experiments on human subjects while data was gathered on muscular activation and gait kinematics. The results of the characterization show success in imposing inversion and eversion angle perturbations of approximately 9° with a response time of 0.5 s. Preliminary experiments focusing on inter-leg coordination with healthy human subjects show that one-sided inversion and eversion perturbations have virtually no effect on gait kinematics. However, changes in muscular activation from one-sided perturbations show statistical significance in key lower limb muscles. Thus, the prototype device demonstrates novelty in the context of human gait research for potential applications in rehabilitation.
ContributorsBarkan, Andrew (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2016
137772-Thumbnail Image.png
Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05