Matching Items (7)
Filtering by

Clear all filters

133801-Thumbnail Image.png
Description
The natural habitat as well as the food abundance and food sources of avian species is changing due to urbanization, and such anthropocentric actions could lead to devastating impacts on bird populations. As changes in distribution and nutrition are thought to be related to the gut microbiome, the goal of

The natural habitat as well as the food abundance and food sources of avian species is changing due to urbanization, and such anthropocentric actions could lead to devastating impacts on bird populations. As changes in distribution and nutrition are thought to be related to the gut microbiome, the goal of this study was to determine the relationship between nutritional markers, including body mass, gizzard mass, triglycerides, free glycerol and glycogen, and the gut microbiome in urban and rural house sparrows (Passer domesticus), to understand physiological differences between urban and rural house sparrows. We hypothesized that increased access to human refuse, through urbanization, may significantly alter the gut microbiome and thus, the nutritional physiology-the effects of foods on metabolism-of urban birds. Fecal samples were collected from rural (n=13) and urban (n=7) birds to characterize the gut microbiome and plasma samples were collected to measure nutritional markers using commercially available kits. Following euthanasia, liver samples were collected to measure triglycerides, free glycerol and glycogen. While there were no significant differences in circulating triglycerides or free glycerol between populations, urban birds had significantly greater blood glucose (p=0.046) compared to rural birds, when normalized to body mass. Additionally, rural birds had significantly more plasma uric acid (p=0.016) and liver free glycerol (p=0.044). Higher blood glucose suggests greater accessibility to carbohydrates in an urban setting or higher rates of gluconeogenesis. Uric acid is a byproduct of purine catabolism and a potent antioxidant. Thus, higher uric acid suggests that rural birds may utilize more protein for energy. Finally, higher liver free glycerol in rural birds suggests they metabolize more fat but could also indicate that urban birds have greater glycerol gluconeogenesis, which may consume free glycerol resulting in higher glucose concentrations. However, the current study does not provide evidence for this as there were no significant differences in the gluconeogenic enzyme PEPCK-C levels between urban and rural house sparrows (p= 0.165). While triglyceride, glucose, and uric acid levels differed between urban and rural birds, there were additionally no significant differences in the gut microbiome, indicating that although nutritional physiology can be affected by distribution and varying food availability and sources, differences in the gut microbiome are evident at the phyla level.
ContributorsGadau, Alice (Author) / Sweazea, Karen (Thesis director) / Whisner, Corrie (Committee member) / Crawford, Melisa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135250-Thumbnail Image.png
Description
In the United States, the prevalence of pediatric obesity has increased to 17% in the general population and even more so in the Hispanic pediatric population to 22.4%. These children are at a higher risk for associated comorbidities, including cardiovascular disease and insulin resistance. The purpose of the following study

In the United States, the prevalence of pediatric obesity has increased to 17% in the general population and even more so in the Hispanic pediatric population to 22.4%. These children are at a higher risk for associated comorbidities, including cardiovascular disease and insulin resistance. The purpose of the following study is to determine the effectiveness of the Nutrition and Health Awareness curriculum at reducing childhood obesity by evaluating alterations in the gut microbial composition, diet, and overall health of the students throughout the five-week program. Nutrition and Health Awareness (NHA) is a student organization that strives to reduce the prevalence of obesity, diabetes, and cardiovascular diseases, specifically in children, by providing active nutrition education services through peer mentoring in elementary schools and community programs. This study went through ASU's Institutional Review Board process and all forms were translated into Spanish. The control group maintained their normal routines and the experimental group received the 5 week NHA program and then continued with their normal routines. Anthropometric measures (Body Mass Index, waist-to-hip ratio, and blood pressure), diet measures (Hispanic food frequency questionnaire), fecal swabs, and content surveys were collected on weeks 0, 5, and 8. Contrary to expected, alpha diversity, kilocalorie intake, and macronutrient intake decreased as the study progressed for both the control and experimental groups. Anthropometric measurements were relatively stable. Though not statistically significant, the greatest difference in time points is between weeks 1 and 8. This decrease in alpha diversity and kilocalorie intake could be due to a change in environment since the children started school on week 8. Future implications of this study are that parental involvement is necessary for an effective, sustainable change in these children. More research in different settings is necessary to determine NHA's effectiveness
ContributorsPatel, Kapila Cristina (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Whisner, Corrie (Committee member) / School of Nutrition and Health Promotion (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135257-Thumbnail Image.png
Description
Turmeric is the bright yellow root that has been used as a spice, healing remedy, and textile dye. Previous studies have suggested that the most active ingredient in turmeric, curcumin, could reduce serum cholesterol concentration. However, most of these studies were conducted on animals and not many have been done

Turmeric is the bright yellow root that has been used as a spice, healing remedy, and textile dye. Previous studies have suggested that the most active ingredient in turmeric, curcumin, could reduce serum cholesterol concentration. However, most of these studies were conducted on animals and not many have been done on controlled human trials. This randomized, double-blinded, controlled crossover study evaluates the effects of turmeric on blood cholesterol concentrations including total cholesterol, LDL cholesterol, HLD cholesterol, and triglycerides. In this study, eight healthy participants between the ages of 18 and 45 were randomized to receive either 500mg capsules of turmeric or placebo for a period of three weeks. Following a wash-out period of five weeks, all participants were crossed over to the alternative treatment for another three weeks. After comparing the 3 week treatment and placebo phases, turmeric showed no significant effect on serum lipid concentrations. Furthermore, a slight increase in total cholesterol concentrations was observed following the turmeric phase when compared to the placebo phase.
ContributorsDo, Ngoc Bich Thi (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134746-Thumbnail Image.png
Description
Turmeric, scientifically known as Curcuma longa, is a tropical plant that is most often consumed in India.1 The rhizome of the plant is dried and then ground into a fine, vibrant yellow powder. In addition to its function as a spice, turmeric is also used in traditional Ayervedic medicine due

Turmeric, scientifically known as Curcuma longa, is a tropical plant that is most often consumed in India.1 The rhizome of the plant is dried and then ground into a fine, vibrant yellow powder. In addition to its function as a spice, turmeric is also used in traditional Ayervedic medicine due to its unique medical properties. These unique properties are attributed to the three major constituents of turmeric: curcumin, α-isocurcumin, and β-isocurcumin.2 Curcumin (Diferuloylmethane; C21H20O6), makes up 5% of turmeric by weight, and is the most prominent active ingredient within the turmeric root. Perhaps the most intriguing characteristic about curcumin is its ability to modulate targets such as, but not limited to, transcription factors, enzymes, apoptosis genes, and growth factors.1 Modern medical research has determined curcumin to be a viable treatment and prevention method for disease such as type II diabetes mellitus, rheumatoid arthritis, liver cirrhosis, and certain cancers. However, research on turmeric’s effects on gastrointestinal health is significantly lacking. This randomized, double-blind, cross-over trial looked to see if supplemental turmeric (500 mg as dried root powder) would significantly raise breath hydrogen emission (BHE) and reduce small bowel transit time (SBTT) in 8 female adults who were suffering from chronic constipation. Although supplemental turmeric did not significantly impact BHE or SBTT, the number of bowel movements greatly increased during turmeric intervention.
ContributorsUgarte, Noel (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

The incidence of childhood obesity has become increasingly prevalent in the United States in recent years. The development of obesity at any age, but especially in adolescence, can have lasting negative effects in the form of cardiometabolic disease, increased incurred healthcare costs, and potential negative effects on quality of life.

The incidence of childhood obesity has become increasingly prevalent in the United States in recent years. The development of obesity at any age, but especially in adolescence, can have lasting negative effects in the form of cardiometabolic disease, increased incurred healthcare costs, and potential negative effects on quality of life. In recent years, a rising trend of obesity, in both adults and adolescents, has been observed in lower income and ethnic groups. Increased adiposity can be influenced by modifiable factors -(physical activity, caloric intake, or sleep) or by non-modifiable factors (ethnicity, genetic predispositions, and socioeconomic status). The influence of these factors can be observed in individuals of all ages, including infants. A common indicator of the development of childhood obesity is rapid weight gain (RWG) within an infant’s first year of life. The composition of the gut microbiome can act as a predictor for RWG and the development of childhood obesity. Infants are exposed to an immense microbial load when they are born and their gut microbiome is continually diversified through their method of feeding and the subsequent introduction to solid foods. While currently understudied, it is understood that cultural and socioeconomic factors influence the development of the gut microbiome, which is further explored in this analysis. The DNA from 51 fecal samples from infants ranging from 3 weeks to 12 months in age was extracted and sequenced using next-generation sequencing, and the resulting sequences were analyzed using QIIME 2. Results from alpha-diversity and beta-diversity metrics showed significant differences in the gut microbiome of infants when comparing groups based on baby race/ethnicity, household income, and mom’s education. These findings suggest the importance of sociodemographic characteristics in shaping the gut microbiome and suggest the importance of future studies including diverse populations in gut microbiome work.

ContributorsGallello, Chloe (Author) / Whisner, Corrie (Thesis director) / Petrov, Megan (Committee member) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description
The microorganisms that form the gut microbiome begin colonizing the gut at birth. The microorganisms will establish a symbiotic relationship with the host when in a state of eubiosis. However, when there is an imbalance or lack of diversity in the microorganisms present in the gut microbiome, it will shift

The microorganisms that form the gut microbiome begin colonizing the gut at birth. The microorganisms will establish a symbiotic relationship with the host when in a state of eubiosis. However, when there is an imbalance or lack of diversity in the microorganisms present in the gut microbiome, it will shift to a state of dysbiosis, which increases the risk of inflammatory bowel and neurodegenerative diseases. There are known factors that affect the infant intestinal microbiome: mode of delivery, gestational age, and exposures, such as the use of antibiotics and feeding methods. Studies have shown that maternal lifestyle, particularly stress levels and diet, has an association with the infant microbiome diversity. However, there is limited literature that examines how postpartum maternal sleep influences the intestinal microbiome diversity in infants. We hypothesized that sleep efficiency below 85%, total sleep time and nocturnal sleep time below 7 hours, and later nocturnal sleep onset would be associated with decreased gut microbiome diversity within the sample and between samples. 27 Mother-infant pairings were used for this sub-analysis. Postpartum maternal sleep data was obtained via actigraphs and sleep diaries while infant intestinal microbiome data was obtained through fecal samples swabbed from soiled diapers. Actigraphs recorded time, movement, temperature, and light for five 24-hour periods, and sleep diaries were used to supplement the actigraphy and ease the scoring of sleep. DNA samples were extracted and sequenced using next-generation sequences, and QIIME2 was used to analyze these sequences. Alpha- and beta-diversity results following sequencing revealed good postpartum maternal sleep efficiency is associated with increased infant gut microbiome diversity within and between samples. There was a trend for nocturnal sleep onset being associated with beta-diversity measurements which were driven by phylogenetic differences and abundance of bacteria. Nocturnal total sleep time and 24-hour total sleep time were not associated with alpha- and beta-diversity. Our findings as well as the scarcity of the literature illustrate the need for further investigations on the mechanics of maternal sleep efficiency association with infant gut microbiome. Future research is needed to further evaluate the trending nocturnal sleep onset influences on the infant gut microbiome beta-diversity with a larger and more diverse sample.
ContributorsMacias, Janet (Author) / Petrov, Megan (Thesis director) / Whisner, Corrie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05
161261-Thumbnail Image.png
Description
Historically, researchers in the gut microbiome have deemed the composition of the microbiome as being adult by the age of two. However, recent studies have contradicted this, demonstrating statistically significant differences in the microbiome even through childhood and adolescence. This difference is important in the field of microbiome research, particularly

Historically, researchers in the gut microbiome have deemed the composition of the microbiome as being adult by the age of two. However, recent studies have contradicted this, demonstrating statistically significant differences in the microbiome even through childhood and adolescence. This difference is important in the field of microbiome research, particularly in studies examining this relationship with weight, because even though there have been significant associations between the gut microbiome and weight, they have been largely studied in adults. The freshman year of college is an interesting time to study this relationship in younger populations, due to the lifestyle changes that make them vulnerable to weight gain. This study included N=139 participants, a majority female (N=97, 69.8%), white (N=59, 42.4%), and non-Hispanic (N=89, 64%). Participants were only included in this analysis if they gave 2 or more fecal samples over the 4 timepoint study. Samples were sequenced using the Illumina MiSeq instrument after polymerase chain reaction (PCR) amplification was performed on the V4 region of the 16S rRNA gene sequence. Statistical analysis was performed using the longitudinal plugin of QIIME2. Results demonstrate that low abundance features seemed to drive a majority of the differences in variability between those who maintained their weight over the course of the study and those who gained weight. This was demonstrated through many significant Unweighted UniFrac results with corresponding nonsignificant Weighted UniFrac data. This study demonstrated that changes in lower abundance features may have driven the significant differences in weight status in this study. This study emphasized the importance of low abundance features and how this relates to changes in weight status during a period of major lifestyle changes. Further work is needed to confirm these findings and explore how gut microbes change in free-living individuals gaining weight over time.
ContributorsAhern, Mary (Author) / Whisner, Corrie (Thesis advisor) / Bruening, Meg (Committee member) / Sears, Dorothy (Committee member) / Arizona State University (Publisher)
Created2021