Matching Items (20)
152156-Thumbnail Image.png
Description
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research. Particularly, the four chapters show how the changing scientific practices about cellular life in embryology, cell culture, aging research, and molecular biology of Caenorhabditis elegans shaped the interpretations about cell degeneration in the twentieth-century as life-shaping, limit-setting, complex, yet regulated. These events created and consolidated important concepts in life sciences such as programmed cell death, the Hayflick limit, apoptosis, and death genes. These cases also transformed the material and epistemic practices about the end of cellular life subsequently and led to the formations of new research communities. The four cases together show the ways cell degeneration became a shared subject between molecular cell biology, developmental biology, gerontology, oncology, and pathology of degenerative diseases. These practices and perspectives created a special kind of interconnectivity between different fields and led to a level of interdisciplinarity within cell degeneration research by the early 1990s.
ContributorsJiang, Lijing (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Hurlbut, James (Committee member) / Creath, Richard (Committee member) / White, Michael (Committee member) / Arizona State University (Publisher)
Created2013
153412-Thumbnail Image.png
Description
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is essential for the innate immune response to danger signals. Importantly, the NLRP3 inflammasome responds to structurally and functionally dissimilar stimuli. It is currently unknown how the NLRP3 inflammasome responds to such diverse triggers. This dissertation investigates the role of ion flux

The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is essential for the innate immune response to danger signals. Importantly, the NLRP3 inflammasome responds to structurally and functionally dissimilar stimuli. It is currently unknown how the NLRP3 inflammasome responds to such diverse triggers. This dissertation investigates the role of ion flux in regulating the NLRP3 inflammasome. Project 1 explores the relationship between potassium efflux and Syk tyrosine kinase. The results reveal that Syk activity is upstream of mitochondrial oxidative signaling and is crucial for inflammasome assembly, pro-inflammatory cytokine processing, and caspase-1-dependent pyroptotic cell death. Dynamic potassium imaging and molecular analysis revealed that Syk is downstream of, and regulated by, potassium efflux. Project 1 reveals the first identified intermediate regulator of inflammasome activity regulated by potassium efflux. Project 2 focuses on P2X7 purinergic receptor-dependent ion flux in regulating the inflammasome. Dynamic potassium imaging revealed an ATP dose-dependent efflux of potassium driven by P2X7. Surprisingly, ATP induced mitochondrial potassium mobilization, suggesting a mitochondrial detection of purinergic ion flux. ATP-induced potassium and calcium flux was found to regulate mitochondrial oxidative signaling upstream of inflammasome assembly. First-ever multiplexed imaging of potassium and calcium dynamics revealed that potassium efflux is necessary for calcium influx. These results suggest that ATP-induced potassium efflux regulates the inflammasome by calcium influx-dependent mitochondrial oxidative signaling. Project 2 defines a coordinated cation flux dependent on the efflux of potassium and upstream of mitochondrial oxidative signaling in inflammasome regulation. Lastly, this dissertation contributes two methods that will be useful for investigating inflammasome biology: an optimized pipeline for single cell transcriptional analysis, and a mouse macrophage cell line expressing a genetically encoded intracellular ATP sensor. This dissertation contributes to understanding the fundamental role of ion flux in regulation of the NLRP3 inflammasome and identifies potassium flux and Syk as potential targets to modulate inflammation.
ContributorsYaron, Jordan Robin (Author) / Meldrum, Deirdre R (Thesis advisor) / Blattman, Joseph N (Committee member) / Glenn, Honor L (Committee member) / Arizona State University (Publisher)
Created2015
156619-Thumbnail Image.png
Description
Cell death is a powerful tool through which organisms can inhibit the spread of viruses by preventing their replication. In this work, I used viral and chemical stressors to elucidate the mechanisms by which one anti-viral system might be activated over another, focusing on the programmable death pathway necroptosis and

Cell death is a powerful tool through which organisms can inhibit the spread of viruses by preventing their replication. In this work, I used viral and chemical stressors to elucidate the mechanisms by which one anti-viral system might be activated over another, focusing on the programmable death pathway necroptosis and Protein Kinase R (PKR). PKR can detect viral dsRNA and trigger antiviral effects such as cessation of translation and induction of programmed death. Necroptosis is a rapid cellular death that can be induced via sensors such as DNA-dependent activator of IFN-regulatory factors (DAI), also known as Z-DNA-binding protein 1 (ZBP1). DAI contains a Z-form nucleic acid (ZNA) binding domain. E3, the primary vaccinia virus (VACV) interferon resistance protein, contains a similar domain in its amino terminus. We have previously reported this domain to be necessary for the inhibition of both PKR activation and DAI/ZBP1-mediated necroptosis.

Monkeypox virus is a reemerging human pathogen. Despite a partial amino-terminal deletion in its E3 homolog, it does not activate PKR. In chapter 2, I show that MPXV produces less dsRNA than VACV, which could explain how the virus avoids activating PKR.

The amino-terminus of vaccinia is associated with ZNA binding, inhibition of PKR, and inhibition of necroptosis. To determine the roles of PKR inhibition and ZNA binding in necroptosis inhibition, I characterized the VACV mutants Za(ADAR1)-E3, which binds ZNA but does not inhibit PKR, and E3:Y48A, which cannot bind ZNA. I found that while Za(ADAR1)-E3 fails to induce necroptosis, E3:Y48A does not activate PKR but does induce necroptosis. This suggests that Z-form nucleic acid binding is not necessary for vaccinia E3-mediated inhibition of PKR, nor is the inhibition of PKR sufficient for the inhibition of necroptosis.

Finally, all known ZNA-binding proteins have immune functions and home to stress granules. I asked if stress granule formation alone could lead to necroptosis. I found that in L929 cells sodium arsenite, a known inducer of stress granules, could trigger DAI-dependent necroptosis. This suggests that DAI/ZBP1 is not necessarily a sensor of viral ligands but perhaps is a sensor of stress signals brought about by infection.
ContributorsJohnson, Brian Patrick (Author) / Jacobs, Bertram L (Thesis advisor) / Blattman, Joseph N (Committee member) / Langland, Jeffrey O (Committee member) / Stout, Valerie G (Committee member) / Arizona State University (Publisher)
Created2018
141315-Thumbnail Image.png
Description

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may not be exclusively good. We reveal implications for the “dark side” of institutional trust by reviewing relevant theories and empirical research that can contribute to a more holistic understanding. We frame our discussion by suggesting there may be a “Goldilocks principle” of institutional trust, where trust that is too low (typically the focus) or too high (not usually considered by trust researchers) may be problematic. The chapter focuses on the issue of too-high trust and processes through which such too-high trust might emerge. Specifically, excessive trust might result from external, internal, and intersecting external-internal processes. External processes refer to the actions institutions take that affect public trust, while internal processes refer to intrapersonal factors affecting a trustor’s level of trust. We describe how the beneficial psychological and behavioral outcomes of trust can be mitigated or circumvented through these processes and highlight the implications of a “darkest” side of trust when they intersect. We draw upon research on organizations and legal, governmental, and political systems to demonstrate the dark side of trust in different contexts. The conclusion outlines directions for future research and encourages researchers to consider the ethical nuances of studying how to increase institutional trust.

ContributorsNeal, Tess M.S. (Author) / Shockley, Ellie (Author) / Schilke, Oliver (Author)
Created2016
173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
173261-Thumbnail Image.png
Description

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E. Sulston received the Nobel Prize in Physiology or Medicine in 2002 for their work on the genetic regulation of organ development and programmed cell death. Research on cell lineages before and after embryonic development may lead to new ways to reduce or promote cell death, which can be important in preventing diseases such as Alzheimer's or cancer.

Created2017-06-08
172869-Thumbnail Image.png
Description

The Hayflick Limit is a concept that helps to explain the
mechanisms behind cellular aging. The concept states that a normal human
cell can only replicate and divide forty to sixty times before it
cannot divide anymore, and will break down by programmed cell death
or

The Hayflick Limit is a concept that helps to explain the
mechanisms behind cellular aging. The concept states that a normal human
cell can only replicate and divide forty to sixty times before it
cannot divide anymore, and will break down by programmed cell death
or apoptosis. The concept of the Hayflick Limit revised Alexis
Carrel's earlier theory, which stated that cells can replicate
themselves infinitely. Leonard Hayflick developed the concept while
at the Wistar Institute in Philadelphia,
Pennsylvania, in 1965. In his 1974 book Intrinsic
Mutagenesis, Frank Macfarlane Burnet named the concept after
Hayflick. The concept of the Hayflick Limit helped scientists study
the effects of cellular aging on human populations from embryonic
development to death, including the discovery of the effects of
shortening repetitive sequences of DNA, called telomeres, on the
ends of chromosomes. Elizabeth Blackburn, Jack Szostak and Carol
Greider received the Nobel Prize in Physiology or Medicine in 2009
for their work on genetic structures related to the Hayflick
Limit.

Created2014-11-14
173770-Thumbnail Image.png
Description

The p53 protein acts as a pivotal suppressor of inappropriate cell proliferation. By initiating suppressive effects through induction of apoptosis, cell senescence, or transient cell-cycle arrest, p53 plays an important role in cancer suppression, developmental regulation, and aging. Its discovery in 1979 was a product of research into viral etiology

The p53 protein acts as a pivotal suppressor of inappropriate cell proliferation. By initiating suppressive effects through induction of apoptosis, cell senescence, or transient cell-cycle arrest, p53 plays an important role in cancer suppression, developmental regulation, and aging. Its discovery in 1979 was a product of research into viral etiology and the immunology of cancer. The p53 protein was first identified in a study of the role of viruses in cancer through its ability to form a complex with viral tumor antigens. In the same year, an immunological study of cancer also found p53 due to its immunoreactivity with tumor antisera. Although a series of studies found p53 through various routes, and various researchers called it different names, it was eventually confirmed that they had all encountered the same protein, p53.

Created2011-01-21
172856-Thumbnail Image.png
Description

In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing

In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing development. At a time when only a few developmental biologists studied cell death, or apoptosis, Saunders and his colleagues showed that researchers could use embryological experiments to uncover the causal mechanisms of apotosis. The researchers published many of their results in the 1962 paper 'Cellular death in morphogenesis of the avian wing.'

Created2014-03-07
173753-Thumbnail Image.png
Description

The HeLa cell line was the first immortal human cell line that George Otto Gey, Margaret Gey, and Mary Kucibek first isolated from Henrietta Lacks and developed at The Johns Hopkins Hospital in Baltimore, Maryland, in 1951. An immortal human cell line is a cluster of cells that continuously multiply

The HeLa cell line was the first immortal human cell line that George Otto Gey, Margaret Gey, and Mary Kucibek first isolated from Henrietta Lacks and developed at The Johns Hopkins Hospital in Baltimore, Maryland, in 1951. An immortal human cell line is a cluster of cells that continuously multiply on their own outside of the human from which they originated. Scientists use immortal human cell lines in their research to investigate how cells function in humans. Though the HeLa cell line has contributed to many advancements in biomedical research since the twentieth century, its usage in medical research has been controversial because Lacks did not consent to having her cells used for such purposes. As of 2020, scientists continue to use the HeLa cell line for numerous scientific advancements, such as the development of vaccines and the identification of many underlying disease mechanisms.

Created2020-09-18