Matching Items (2)

Filtering by

Clear all filters

148276-Thumbnail Image.png

In Vitro Release Study of L-Tyrosine-Loaded PLGA Microparticles

Description

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo from the bodily environment, and reduction in systemic side effects. This experiment used a single emulsion technique to encapsulate L-tyrosine in PLGA microparticles and UV spectrophotometry to analyze the drug release over a period of one week. The release assay found that for the tested samples, the released amount is distinct initially, but is about the same after 4 days, and they generally follow the same normalized percent released pattern. The experiment could continue with testing more samples, test the same samples for a longer duration, and look into higher w/w concentrations such as 20% or 50%.

Contributors

Agent

Created

Date Created
2021-05

131784-Thumbnail Image.png

Ultrasound Sensitive Injectable Materials

Description

In an embolization therapy, a material is injected into a vessel to block blood flow. While this therapy is useful in starving cancerous cells it can be dangerous, with some blockades in the brain dislodging and causing strokes or blindness.

In an embolization therapy, a material is injected into a vessel to block blood flow. While this therapy is useful in starving cancerous cells it can be dangerous, with some blockades in the brain dislodging and causing strokes or blindness. Currently, embolic materials on the market such as metal coils, balloons, and liquid embolic agents do not have a quick removal procedure. An ultrasound cleavable material could be removed in an emergency situation without invasive surgery. The primary goal of this research is to design and synthesize a polymer that can be broken down by high intensity focused ultrasound (HIFU). Initially, we have tested the ultrasound sensitive qualities on PPODA-QT hydrogel, a common embolic agent, but the gel showed no physical change after HIFU exposure. It is theorized that PNIPAAm combined with HIFU sensitive monomers can develop a temperature and ultrasound sensitive embolic agent. In our studies, poly(NIPAAm-co-tBa) had a slight lower critical solution temperature (LCST) change of about 2˚C from before to after HIFU while the study with poly(NIPAAm-co-ACL-BME) and PPODA-QT showed no change in LCST.

Contributors

Agent

Created

Date Created
2020-05