Matching Items (3)
Filtering by

Clear all filters

137456-Thumbnail Image.png
Description
Ultrasound is a sound wave that produces acoustic pressure and is most commonly known as a noninvasive technique for bodily imaging. However, high-intensity focused ultrasound can be used for noninvasive physiotherapy. An example of this the treatment of tumors in the kidneys, as the sound waves of HIFU interacts with

Ultrasound is a sound wave that produces acoustic pressure and is most commonly known as a noninvasive technique for bodily imaging. However, high-intensity focused ultrasound can be used for noninvasive physiotherapy. An example of this the treatment of tumors in the kidneys, as the sound waves of HIFU interacts with tissues in the body. For this thesis, the necessary parameters for ultrasonic stimulation of the central nervous system in rats were characterized.
ContributorsHughes, Brett William (Co-author) / Castel, Nikki (Co-author) / Hillen, Brian (Thesis director) / Helms Tillery, Stephen (Committee member) / Lozano, Cecil (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
135723-Thumbnail Image.png
Description
This purpose of this study was to develop reliable methods for ultrasound measurements of skeletal muscle architecture, and to identify which specific quadriceps measurements most closely relate to peak isometric torque of the leg extensors. These data were obtained as part of a larger research study and consist of 9

This purpose of this study was to develop reliable methods for ultrasound measurements of skeletal muscle architecture, and to identify which specific quadriceps measurements most closely relate to peak isometric torque of the leg extensors. These data were obtained as part of a larger research study and consist of 9 total subjects (4 males, 5 females; age (30.6 ± 13.6yr). Ultrasound images for muscle thickness and pennation angle were obtained for each subject during two separate testing days (separated by 5-10 days). Images were acquired at various anatomical sites of the quadriceps and each image was analyzed using Image J software. Quadriceps muscles assessed for muscle thickness and pennation angle included the vastus lateralis (VL), and vastus intermedius (VI), while rectus femoris (RF) was assessed only for muscle thickness. Peak isometric torque measurements were obtained at 60 degrees of knee angle for knee extension using an isokinetic dynamometer. Results show that the methods chosen for ultrasound measurement produced reliable inter-day results for muscle thickness and pennation angle. VL muscle thickness and pennation angle obtained at the lateral site corresponding to 39% of leg length was highly related to peak isometric torque for knee extension. The results of this study identify specific measurement sites that are related to muscle function. In addition, these data further validate that ultrasound measurement is reliable to measure muscle thickness and pennation angle in skeletal muscle.
ContributorsSkotak, Nathaniel James (Author) / Dickinson, Jared (Thesis director) / Vidt, Meghan (Committee member) / Luden, Nick (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
158833-Thumbnail Image.png
Description
Transcranial focused ultrasound (tFUS) is a unique neurostimulation modality with potential to develop into a highly sophisticated and effective tool. Unlike any other noninvasive neurostimulation technique, tFUS has a high spatial resolution (on the order of millimeters) and can penetrate across the skull, deep into the brain. Sub-thermal tFUS has

Transcranial focused ultrasound (tFUS) is a unique neurostimulation modality with potential to develop into a highly sophisticated and effective tool. Unlike any other noninvasive neurostimulation technique, tFUS has a high spatial resolution (on the order of millimeters) and can penetrate across the skull, deep into the brain. Sub-thermal tFUS has been shown to induce changes in EEG and fMRI, as well as perception and mood. This study investigates the possibility of using tFUS to modulate brain networks involved in attention and cognitive control.Three different brain areas linked to saliency, cognitive control, and emotion within the cingulo-opercular network were stimulated with tFUS while subjects performed behavioral paradigms. The first study targeted the dorsal anterior cingulate cortex (dACC), which is associated with performance on cognitive attention tasks, conflict, error, and, emotion. Subjects performed a variant of the Erikson Flanker task in which emotional faces (fear, neutral or scrambled) were displayed in the background as distractors. tFUS significantly reduced the reaction time (RT) delay induced by faces; there were significant differences between tFUS and Sham groups in event related potentials (ERP), event related spectral perturbation (ERSP), conflict and error processing, and heart rate variability (HRV).
The second study used the same behavioral paradigm, but targeted tFUS to the right anterior insula/frontal operculum (aIns/fO). The aIns/fO is implicated in saliency, cognitive control, interoceptive awareness, autonomic function, and emotion. tFUS was found to significantly alter ERP, ERSP, conflict and error processing, and HRV responses.
The third study targeted tFUS to the right inferior frontal gyrus (rIFG), employing the Stop Signal task to study inhibition. tFUS affected ERPs and improved stopping speed. Using network modeling, causal evidence is presented for rIFG influence on subcortical nodes in stopping.
This work provides preliminarily evidence that tFUS can be used to modulate broader network function through a single node, affecting neurophysiological processing, physiologic responses, and behavioral performance. Additionally it can be used as a tool to elucidate network function. These studies suggest tFUS has the potential to affect cognitive function as a clinical tool, and perhaps even enhance wellbeing and expand conscious awareness.
ContributorsFini, Maria Elizabeth (Author) / Tyler, William J (Thesis advisor) / Greger, Bradley (Committee member) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2020