Matching Items (2)
Filtering by

Clear all filters

155188-Thumbnail Image.png
Description
The use of a non-invasive form of energy to modulate neural structures has gained wide spread attention because of its ability to remotely control neural excitation. This study investigates the ability of focused high frequency ultrasound to modulate the excitability the peripheral nerve of an amphibian. A 5MHz ultrasound transducer

The use of a non-invasive form of energy to modulate neural structures has gained wide spread attention because of its ability to remotely control neural excitation. This study investigates the ability of focused high frequency ultrasound to modulate the excitability the peripheral nerve of an amphibian. A 5MHz ultrasound transducer is used for the study with the pulse characteristics of 57msec long train burst and duty cycle of 8% followed by an interrogative electrical stimulus varying from 30μsecs to 2msecs in pulse duration. The nerve excitability is determined by the compound action potential (CAP) amplitude evoked by a constant electrical stimulus. We observe that ultrasound's immediate effect on axons is to reduce the electrically evoked CAP amplitude and thereby suppressive in effect. However, a subsequent time delayed increased excitability was observed as reflected in the CAP amplitude of the nerve several tens of milliseconds later. This subsequent change from ultrasound induced nerve inhibition to increased excitability as a function of delay from ultrasound pulse application is unexpected and not predicted by typical nerve ion channel kinetic models. The recruitment curve of the sciatic nerve modified by ultrasound suggests the possibility of a fiber specific response where the ultrasound inhibits the faster fibers more than the slower ones. Also, changes in the shape of the CAP waveform when the nerve is under the inhibitive effect of ultrasound was observed. It is postulated that these effects can be a result of activation of stretch activation channels, mechanical sensitivity of the nerve to acoustic radiation pressure and modulation of ion channels by ultrasound.

The neuromodulatory capabilities of ultrasound in tandem with electrical stimulation has a significant potential for development of neural interfaces to peripheral nerve.
ContributorsChirania, Sanchit (Author) / Towe, Bruce (Thesis advisor) / Abbas, James (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2016
135723-Thumbnail Image.png
Description
This purpose of this study was to develop reliable methods for ultrasound measurements of skeletal muscle architecture, and to identify which specific quadriceps measurements most closely relate to peak isometric torque of the leg extensors. These data were obtained as part of a larger research study and consist of 9

This purpose of this study was to develop reliable methods for ultrasound measurements of skeletal muscle architecture, and to identify which specific quadriceps measurements most closely relate to peak isometric torque of the leg extensors. These data were obtained as part of a larger research study and consist of 9 total subjects (4 males, 5 females; age (30.6 ± 13.6yr). Ultrasound images for muscle thickness and pennation angle were obtained for each subject during two separate testing days (separated by 5-10 days). Images were acquired at various anatomical sites of the quadriceps and each image was analyzed using Image J software. Quadriceps muscles assessed for muscle thickness and pennation angle included the vastus lateralis (VL), and vastus intermedius (VI), while rectus femoris (RF) was assessed only for muscle thickness. Peak isometric torque measurements were obtained at 60 degrees of knee angle for knee extension using an isokinetic dynamometer. Results show that the methods chosen for ultrasound measurement produced reliable inter-day results for muscle thickness and pennation angle. VL muscle thickness and pennation angle obtained at the lateral site corresponding to 39% of leg length was highly related to peak isometric torque for knee extension. The results of this study identify specific measurement sites that are related to muscle function. In addition, these data further validate that ultrasound measurement is reliable to measure muscle thickness and pennation angle in skeletal muscle.
ContributorsSkotak, Nathaniel James (Author) / Dickinson, Jared (Thesis director) / Vidt, Meghan (Committee member) / Luden, Nick (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05