Matching Items (9)
Filtering by

Clear all filters

Description
Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer from pain in the lower legs, thigh and buttocks after

Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer from pain in the lower legs, thigh and buttocks after activities. Electrical neurostimulation based on the "Gate Theory of Pain" is a known to way to reduce pain but current devices to do this are bulky and not well suited to implantation in peripheral tissues. There is also an increased risk associated with surgery which limits the use of these devices. This research has designed and constructed wireless ultrasound powered microstimulators that are much smaller and injectable and so involve less implantation trauma. These devices are small enough to fit through an 18 gauge syringe needle increasing their potential for clinical use. These piezoelectric microdevices convert mechanical energy into electrical energy that then is used to block pain. The design and performance of these miniaturized devices was modeled by computer while constructed devices were evaluated in animal experiments. The devices are capable of producing 500ms pulses with an intensity of 2 mA into a 2 kilo-ohms load. Using the rat as an animal model, a series of experiments were conducted to evaluate the in-vivo performance of the devices.
ContributorsZong, Xi (Author) / Towe, Bruce (Thesis advisor) / Kleim, Jeffrey (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2014
149903-Thumbnail Image.png
Description
Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they

Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they have demonstrated therapeutic utility and clinical efficacy for neurological and psychiatric disorders. When applied for therapeutic applications, these techniques suffer from limitations that hinder the progression of its intended use to treat compromised brain function. DBS requires an invasive surgical procedure that surfaces complications from infection, longevity of electrical components, and immune responses to foreign materials. Both TMS and tDCS circumvent the problems seen with DBS as they are noninvasive procedures, but they fail to produce the spatial resolution required to target specific brain structures. Realizing these restrictions, we sought out to use ultrasound as a neurostimulation modality. Ultrasound is capable of achieving greater resolution than TMS and tDCS, as we have demonstrated a ~2mm lateral resolution, which can be delivered noninvasively. These characteristics place ultrasound superior to current neurostimulation methods. For these reasons, this dissertation provides a developed protocol to use transcranial pulsed ultrasound (TPU) as a neurostimulation technique. These investigations implement electrophysiological, optophysiological, immunohistological, and behavioral methods to elucidate the effects of ultrasound on the central nervous system and raise questions about the functional consequences. Intriguingly, we showed that TPU was also capable of stimulating intact sub-cortical circuits in the anesthetized mouse. These data reveal that TPU can evoke synchronous oscillations in the hippocampus in addition to increasing expression of brain-derived neurotrophic factor (BDNF). Considering these observations, and the ability to noninvasively stimulate neuronal activity on a mesoscale resolution, reveals a potential avenue to be effective in clinical settings where current brain stimulation techniques have shown to be beneficial. Thus, the results explained by this dissertation help to pronounce the significance for these protocols to gain translational recognition.
ContributorsTufail, Yusuf Zahid (Author) / Tyler, William J (Thesis advisor) / Duch, Carsten (Committee member) / Muthuswamy, Jitendran (Committee member) / Santello, Marco (Committee member) / Tillery, Stephen H (Committee member) / Arizona State University (Publisher)
Created2011
133601-Thumbnail Image.png
Description
Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.
ContributorsMieth, Justin Richard (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133764-Thumbnail Image.png
Description
An improved system for wireless neurostimulation was investigated through the design and development of sub-millimeter piezoelectric devices. The devices build on prior work in the lab, which was limited by device size and required surgical implantation. A method of manufacturing sub-mm devices was developed, and utilized to construct this new

An improved system for wireless neurostimulation was investigated through the design and development of sub-millimeter piezoelectric devices. The devices build on prior work in the lab, which was limited by device size and required surgical implantation. A method of manufacturing sub-mm devices was developed, and utilized to construct this new design. The device frequency response was characterized and its resonant modes and output voltages determined through a Fast Fourier Transform. The fundamental thickness mode frequency was found to be 15.4MHz with a corresponding 10.25mV amplitude, and a longitudinal resonant frequency of 3.1Mhz with a corresponding 2.2mV amplitude across a 50Ω resistor. The high miniaturization of the device holds promise for future work for creating an injectable, wireless system for the treatment of neurological disorders.
ContributorsCatchings, Michael Thomas (Author) / Towe, Bruce (Thesis director) / Muthuswamy, Jitendran (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Nerve endings are particularly difficult to target during peripheral nerve block (PNB) procedures, so ultrasound-guided needles are of immense importance to guarantee safe and efficient delivery of the anesthetic to the target nerve. Despite significant progress in needle visualization with ultrasound imaging, there are still several factors that lead to

Nerve endings are particularly difficult to target during peripheral nerve block (PNB) procedures, so ultrasound-guided needles are of immense importance to guarantee safe and efficient delivery of the anesthetic to the target nerve. Despite significant progress in needle visualization with ultrasound imaging, there are still several factors that lead to poor needle visibility, the main factor being insertion angle. Introducing cavities and holes in the needle at specific intervals through pitting corrosion may alter the ultrasonic feedback from the sensor, thereby resulting in improved clarity of the reconstructed image. The purpose of this experiment is to investigate the effectiveness of two novel pitting designs on the needle’s visibility under ultrasound. Two different designs and two depths of cut are tested in a 22 factorial that is blocked by insertion angle: a uniform and a non-uniform design. Needles were cut using a Plain Jane and Igor laser cutter and imaged using a GE Logig e BT12 ultrasound imaging machine. Images were compared visually and objectively by using a tool in Photoshop to calculate the luminosity of the needle. Two videos were also taken capturing the difficulty of imaging surgical needles. Results showed that pitting had a major impact on needle visibility at 30° and a marginal impact at 0°. The videos supported these results as it was considerably more difficult to locate the control needle than the experimental needle. This suggests the probe must be in a specific plane with the control needle for it to be visible while the experimental needle is much more lenient. Results from the two depths of cuts showed similar results in that the designs which were cut twice were more visible than their counterparts at 30°. The study showed that pitting has positive effects on needle visibility; it improves visibility by increasing the luminescence of the needle and by decreasing its sensitivity to probe position.
ContributorsTze, David (Author) / Muthuswamy, Jit (Thesis director) / Towe, Bruce (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
158833-Thumbnail Image.png
Description
Transcranial focused ultrasound (tFUS) is a unique neurostimulation modality with potential to develop into a highly sophisticated and effective tool. Unlike any other noninvasive neurostimulation technique, tFUS has a high spatial resolution (on the order of millimeters) and can penetrate across the skull, deep into the brain. Sub-thermal tFUS has

Transcranial focused ultrasound (tFUS) is a unique neurostimulation modality with potential to develop into a highly sophisticated and effective tool. Unlike any other noninvasive neurostimulation technique, tFUS has a high spatial resolution (on the order of millimeters) and can penetrate across the skull, deep into the brain. Sub-thermal tFUS has been shown to induce changes in EEG and fMRI, as well as perception and mood. This study investigates the possibility of using tFUS to modulate brain networks involved in attention and cognitive control.Three different brain areas linked to saliency, cognitive control, and emotion within the cingulo-opercular network were stimulated with tFUS while subjects performed behavioral paradigms. The first study targeted the dorsal anterior cingulate cortex (dACC), which is associated with performance on cognitive attention tasks, conflict, error, and, emotion. Subjects performed a variant of the Erikson Flanker task in which emotional faces (fear, neutral or scrambled) were displayed in the background as distractors. tFUS significantly reduced the reaction time (RT) delay induced by faces; there were significant differences between tFUS and Sham groups in event related potentials (ERP), event related spectral perturbation (ERSP), conflict and error processing, and heart rate variability (HRV).
The second study used the same behavioral paradigm, but targeted tFUS to the right anterior insula/frontal operculum (aIns/fO). The aIns/fO is implicated in saliency, cognitive control, interoceptive awareness, autonomic function, and emotion. tFUS was found to significantly alter ERP, ERSP, conflict and error processing, and HRV responses.
The third study targeted tFUS to the right inferior frontal gyrus (rIFG), employing the Stop Signal task to study inhibition. tFUS affected ERPs and improved stopping speed. Using network modeling, causal evidence is presented for rIFG influence on subcortical nodes in stopping.
This work provides preliminarily evidence that tFUS can be used to modulate broader network function through a single node, affecting neurophysiological processing, physiologic responses, and behavioral performance. Additionally it can be used as a tool to elucidate network function. These studies suggest tFUS has the potential to affect cognitive function as a clinical tool, and perhaps even enhance wellbeing and expand conscious awareness.
ContributorsFini, Maria Elizabeth (Author) / Tyler, William J (Thesis advisor) / Greger, Bradley (Committee member) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2020
131784-Thumbnail Image.png
Description
In an embolization therapy, a material is injected into a vessel to block blood flow. While this therapy is useful in starving cancerous cells it can be dangerous, with some blockades in the brain dislodging and causing strokes or blindness. Currently, embolic materials on the market such as metal coils,

In an embolization therapy, a material is injected into a vessel to block blood flow. While this therapy is useful in starving cancerous cells it can be dangerous, with some blockades in the brain dislodging and causing strokes or blindness. Currently, embolic materials on the market such as metal coils, balloons, and liquid embolic agents do not have a quick removal procedure. An ultrasound cleavable material could be removed in an emergency situation without invasive surgery. The primary goal of this research is to design and synthesize a polymer that can be broken down by high intensity focused ultrasound (HIFU). Initially, we have tested the ultrasound sensitive qualities on PPODA-QT hydrogel, a common embolic agent, but the gel showed no physical change after HIFU exposure. It is theorized that PNIPAAm combined with HIFU sensitive monomers can develop a temperature and ultrasound sensitive embolic agent. In our studies, poly(NIPAAm-co-tBa) had a slight lower critical solution temperature (LCST) change of about 2˚C from before to after HIFU while the study with poly(NIPAAm-co-ACL-BME) and PPODA-QT showed no change in LCST.
ContributorsLein, Karolena (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05