Matching Items (4)
Filtering by

Clear all filters

157184-Thumbnail Image.png
Description
The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is

The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is one way to avoid our current gigaton-scale emission of carbon dioxide into the atmosphere. However, for this to be possible, separation techniques are necessary to remove the nitrogen from air before combustion or from the flue gas after combustion. Metal-organic frameworks (MOFs) are a relatively new class of porous material that show great promise for adsorptive separation processes. Here, potential mechanisms of O2/N2 separation and CO2/N2 separation are explored.

First, a logical categorization of potential adsorptive separation mechanisms in MOFs is outlined by comparing existing data with previously studied materials. Size-selective adsorptive separation is investigated for both gas systems using molecular simulations. A correlation between size-selective equilibrium adsorptive separation capabilities and pore diameter is established in materials with complex pore distributions. A method of generating mobile extra-framework cations which drastically increase adsorptive selectivity toward nitrogen over oxygen via electrostatic interactions is explored through experiments and simulations. Finally, deposition of redox-active ferrocene molecules into systematically generated defects is shown to be an effective method of increasing selectivity towards oxygen.
ContributorsMcIntyre, Sean (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Lind, Marylaura (Committee member) / Arizona State University (Publisher)
Created2019
171409-Thumbnail Image.png
Description
Drug delivery has made a significant contribution to cancer immunotherapy and can have a tremendous impact on modulating immunometabolism, thereby affecting cancer outcomes. Notably, the science of delivery of cancer vaccines and immunotherapeutics, modulating immune cell functions has inspired development of several successful companies and clinical products. For example, cancer

Drug delivery has made a significant contribution to cancer immunotherapy and can have a tremendous impact on modulating immunometabolism, thereby affecting cancer outcomes. Notably, the science of delivery of cancer vaccines and immunotherapeutics, modulating immune cell functions has inspired development of several successful companies and clinical products. For example, cancer vaccines require activation of dendritic cells (DCs) and tumour associated Mɸs (TAMs) through modulation of their energy metabolism (e.g., glycolysis, glutaminolysis, Krebs cycle). Similar to activated immune cells, cancer cells also upregulate glucose and glutamine transporters for proliferation and survival. Cancer cells having accelerated energy metabolism, which has been exploited as a target for various therapeutic studies. In the first strategy, an immunometabolism strategy based on sustained release of succinate from biomaterials, which incorporate succinate in the backbone of the polymer was developed. This study demonstrates that succinate-based polymeric microparticles act as alarmins by modulating the immunometabolism of DCs and Mɸs to generate robust pro-inflammatory responses for melanoma treatment in immunocompetent young as well as aging mice. In the second strategy, a biomaterial-based strategy was developed to deliver metabolites one-step downstream of the node where the glycolytic pathway is inhibited, to specifically rescue DCs from glycolysis inhibition. The study successfully demonstrated for the first time that the glycolysis of DCs can be rescued both in vitro and in vivo using a biomaterial strategy of delivering metabolites downstream of the inhibitory node. Overall, it is believed that advanced drug delivery strategies will play an important role in marrying the fields of immunometabolism and immunotherapy to generate translatable anti-cancer treatments.
ContributorsInamdar, Sahil (Author) / Acharya, Abhinav P (Thesis advisor) / Rege, Kaushal (Committee member) / Green, Matthew (Committee member) / Curtis, Marion (Committee member) / Seetharam, Mahesh (Committee member) / Arizona State University (Publisher)
Created2022
158546-Thumbnail Image.png
Description
As experiencing hot months and thermal stresses is becoming more common, chemically protective fabrics must adapt and provide protections while reducing the heat stress to the body. These concerns affect first responders, warfighters, and workers regularly surrounded by hazardous chemical agents. While adapting traditional garments with cooling devices provides one

As experiencing hot months and thermal stresses is becoming more common, chemically protective fabrics must adapt and provide protections while reducing the heat stress to the body. These concerns affect first responders, warfighters, and workers regularly surrounded by hazardous chemical agents. While adapting traditional garments with cooling devices provides one route to mitigate this issue, these cooling methods add bulk, are time limited, and may not be applicable in locations without logistical support. Here I take inspiration from nature to guide the development of smart fabrics that have high breathability, but self-seal on exposure to target chemical(s), providing a better balance between cooling and protection.

Natural barrier materials were explored as a guide, focusing specifically on prickly pear cacti. These cacti have a natural waxy barrier that provides protection from dehydration and physically changes shape to modify surface wettability and water vapor transport. The results of this study provided a basis for a shape changing polymer to be used to respond directly to hazardous chemicals, swelling to contain the agent.

To create a stimuli responsive material, a novel superabsorbent polymer was synthesized, based on acrylamide chemistry. The polymer was tested for swelling properties in a wide range of organic liquids and found to highly swell in moderately polar organic liquids. To help predict swelling in untested liquids, the swelling of multiple test liquids were compared with their thermodynamic properties to observe trends. As the smart fabric needs to remain breathable to allow evaporative cooling, while retaining functionality when soaked with sweat, absorption of water, as well as that of an absorbing liquid in the presence of water were tested.

Micron sized particles of the developed polymer were deposited on a plastic mesh with pore size and open area similar to common clothing fabric to establish the proof of concept of using a breathable barrier to provide chemical protection. The polymer coated mesh showed minimal additional resistance to water vapor transport, relative to the mesh alone, but blocked more than 99% of a xylene aerosol from penetrating the barrier.
ContributorsManning, Kenneth (Author) / Rykaczewski, Konrad (Thesis advisor) / Burgin, Timothy (Committee member) / Emady, Heather (Committee member) / Green, Matthew (Committee member) / Thomas, Marylaura (Committee member) / Arizona State University (Publisher)
Created2020
190891-Thumbnail Image.png
Description
Electrospun fibrous membranes have gained increasing interest in membrane filtration applications due to their high surface area and porosity. To develop a high-performance water filtration membrane a novel zwitterionic functionalized zwitterionic Polysulfone was Electrospun to bead free fibers on Polysulfone membranes. The SBAES25 was successfully Electrospun on Polysulfone membrane and

Electrospun fibrous membranes have gained increasing interest in membrane filtration applications due to their high surface area and porosity. To develop a high-performance water filtration membrane a novel zwitterionic functionalized zwitterionic Polysulfone was Electrospun to bead free fibers on Polysulfone membranes. The SBAES25 was successfully Electrospun on Polysulfone membrane and thermal pressed at above Tg to improve the properties of membrane. The aim of this work is to study Electrospun zwitterionic Polysulfone nanofiber membrane with different characterization methods. The electrospinning method was studied using different polymer concentrations and electrospinning conditions. Scanning Electron Microscopy was used to study the porosity and diameter size of the fiber. TGA-ASSAY method was used to study the difference in water uptake ratio of Polysulfone membrane with and without the Electrospun fiber. A goniometer was used to test the water contact angle of the membrane. Tensile tests were performed to study the improvements in mechanical properties.
ContributorsErravelly, Nitheesh Kumar (Author) / Green, Matthew (Thesis advisor) / Emady, Heather (Committee member) / Seo, Eileen S (Committee member) / Arizona State University (Publisher)
Created2023