Matching Items (3)
Filtering by

Clear all filters

Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
155165-Thumbnail Image.png
Description
For this dissertation, three separate papers explore the study areas of the western Grand Canyon, the Grand Staircase (as related to Grand Canyon) and Desolation Canyon on the Green River in Utah.

In western Grand Canyon, I use comparative geomorphology between the Grand Canyon and the Grand Wash Cliffs (GWC). We

For this dissertation, three separate papers explore the study areas of the western Grand Canyon, the Grand Staircase (as related to Grand Canyon) and Desolation Canyon on the Green River in Utah.

In western Grand Canyon, I use comparative geomorphology between the Grand Canyon and the Grand Wash Cliffs (GWC). We propose the onset of erosion of the GWC is caused by slip on the Grand Wash Fault that formed between 18 and 12 million years ago. Hillslope angle and channel steepness are higher in Grand Canyon than along the Grand Wash Cliffs despite similar rock types, climate and base level fall magnitude. These experimental controls allow inference that the Grand Canyon is younger and eroding at a faster rate than the Grand Wash Cliffs.

The Grand Staircase is the headwaters of some of the streams that flow into Grand Canyon. A space-for-time substitution of erosion rates, supported by landscape simulations, implies that the Grand Canyon is the result of an increase in base level fall rate, with the older, slower base level fall rate preserved in the Grand Staircase. Our data and analyses also support a younger, ~6-million-year estimate of the age of Grand Canyon that is likely related to the integration of the Colorado River from the Colorado Plateau to the Basin and Range. Complicated cliff-band erosion and its effect on cosmogenic erosion rates are also explored, guiding interpretation of isotopic data in landscapes with stratigraphic variation in quartz and rock strength.

Several hypotheses for the erosion of Desolation Canyon are tested and refuted, leaving one plausible conclusion. I infer that the Uinta Basin north of Desolation Canyon is eroding slowly and that its form represents a slow, stable base level fall rate. Downstream of Desolation Canyon, the Colorado River is inferred to have established itself in the exhumed region of Canyonlands and to have incised to near modern depths prior to the integration of the Green River and the production of relief in Desolation Canyon. Analysis of incision and erosion rates in the region suggests integration is relatively recent.
ContributorsDarling, Andrew Lee (Author) / Whipple, Kelin (Thesis advisor) / Semken, Steven (Committee member) / Arrowsmith, Ramon (Committee member) / DeVecchio, Duane (Committee member) / Heimsath, Arjun (Committee member) / Arizona State University (Publisher)
Created2016
Description
The mountains of western North America are spectacular and diverse, from sheer walls of crumbling black limestone in the Canadian Rockies, to smooth glacially polished granite in the Wind River Range, to gargantuan ice-clad volcanoes in the Cascades. These great bastions of rock, snow, and ice, still very much wild

The mountains of western North America are spectacular and diverse, from sheer walls of crumbling black limestone in the Canadian Rockies, to smooth glacially polished granite in the Wind River Range, to gargantuan ice-clad volcanoes in the Cascades. These great bastions of rock, snow, and ice, still very much wild and untamed, provide an incredible arena for adventure, exploration, and challenge. Over the past three years, I have devoted thousands of hours to exploring these vast wild places, climbing high peaks, steep cliffs, and frozen waterfalls. In doing so, I studied the rich geologic history of the mountains. This thesis project is a compilation of stories and images from those adventures, along with the stories of the mountains themselves: how the rocks were formed, thrust skyward, and sculpted over the ages into their present, glorious form. The photographic and detailed narrative of the geology and adventures is on a new website called Cloud Piercers, which currently features three geologically diverse mountain massifs: (1) Mount Rainier, an active volcano in the Cascade Range of Washington; (2) Mount Robson, the highest peak in the Canadian Rockies, within a terrain of folded Paleozoic sedimentary rocks; and (3) the Wind River Range of Wyoming, composed mostly of Archean metamorphic and granitic rocks. This website will be expanded in the future as the geologic studies and adventures continue.
ContributorsSteadman, Dane Kyle (Author) / Reynolds, Stephen (Thesis director) / Johnson, Julia (Committee member) / Heimsath, Arjun (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05