Matching Items (2)

Filtering by

Clear all filters

152849-Thumbnail Image.png

Infinite cacheflow: a rule-caching solution for software defined networks

Description

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding rules. To allow for finer-grained policies on this hardware, efficient ways to support the abstraction of a switch are needed with arbitrarily large rule tables. To do so, a hardware-software hybrid switch is designed that relies on rule caching to provide large rule tables at low cost. Unlike traditional caching solutions, neither individual rules are cached (to respect rule dependencies) nor compressed (to preserve the per-rule traffic counts). Instead long dependency chains are ``spliced'' to cache smaller groups of rules while preserving the semantics of the network policy. The proposed hybrid switch design satisfies three criteria: (1) responsiveness, to allow rapid changes to the cache with minimal effect on traffic throughput; (2) transparency, to faithfully support native OpenFlow semantics; (3) correctness, to cache rules while preserving the semantics of the original policy. The evaluation of the hybrid switch on large rule tables suggest that it can effectively expose the benefits of both hardware and software switches to the controller and to applications running on top of it.

Contributors

Agent

Created

Date Created
  • 2014

158544-Thumbnail Image.png

Improved Bi-criteria Approximation for the All-or-Nothing Multicommodity Flow Problem in Arbitrary Networks

Description

This thesis addresses the following fundamental maximum throughput routing problem: Given an arbitrary edge-capacitated n-node directed network and a set of k commodities, with source-destination pairs (s_i,t_i) and demands d_i>

This thesis addresses the following fundamental maximum throughput routing problem: Given an arbitrary edge-capacitated n-node directed network and a set of k commodities, with source-destination pairs (s_i,t_i) and demands d_i> 0, admit and route the largest possible number of commodities -- i.e., the maximum throughput -- to satisfy their demands.

The main contributions of this thesis are three-fold: First, a bi-criteria approximation algorithm is presented for this all-or-nothing multicommodity flow (ANF) problem. This algorithm is the first to achieve a constant approximation of the maximum throughput with an edge capacity violation ratio that is at most logarithmic in n, with high probability. The approach used is based on a version of randomized rounding that keeps splittable flows, rather than approximating those via a non-splittable path for each commodity: This allows it to work for arbitrary directed edge-capacitated graphs, unlike most of the prior work on the ANF problem. The algorithm also works if a weighted throughput is considered, where the benefit gained by fully satisfying the demand for commodity i is determined by a given weight w_i>0. Second, a derandomization of the algorithm is presented that maintains the same approximation bounds, using novel pessimistic estimators for Bernstein's inequality. In addition, it is shown how the framework can be adapted to achieve a polylogarithmic fraction of the maximum throughput while maintaining a constant edge capacity violation, if the network capacity is large enough. Lastly, one important aspect of the randomized and derandomized algorithms is their simplicity, which lends to efficient implementations in practice. The implementations of both randomized rounding and derandomized algorithms for the ANF problem are presented and show their efficiency in practice.

Contributors

Agent

Created

Date Created
  • 2020