Matching Items (9)
Filtering by

Clear all filters

152709-Thumbnail Image.png
Description
The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria have, however, become attractive microbial factories to produce renewable fuels and chemicals directly from sunlight and CO2. To explore the

The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria have, however, become attractive microbial factories to produce renewable fuels and chemicals directly from sunlight and CO2. To explore the feasibility of photosynthetic production of (S)- and (R)-3-hydroxybutyrate (3HB), building-block monomers for synthesizing the biodegradable plastics polyhydroxyalkanoates and precursors to fine chemicals, synthetic metabolic pathways have been constructed, characterized and optimized in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803). Both types of 3HB molecules were produced and readily secreted from Synechocystis cells without over-expression of transporters. Additional inactivation of the competing PHB biosynthesis pathway further promoted the 3HB production. Analysis of the intracellular acetyl-CoA and anion concentrations in the culture media indicated that the phosphate consumption during the photoautotrophic growth and the concomitant elevated acetyl-CoA pool acted as a key driving force for 3HB biosynthesis in Synechocystis. Fine-tuning of the gene expression levels via strategies, including tuning gene copy numbers, promoter engineering and ribosome binding site optimization, proved critical to mitigating metabolic bottlenecks and thus improving the 3HB production. One of the engineered Synechocystis strains, namely R168, was able to produce (R)-3HB to a cumulative titer of ~1600 mg/L, with a peak daily productivity of ~200 mg/L, using light and CO2 as the sole energy and carbon sources, respectively. Additionally, in order to establish a high-efficiency transformation protocol in cyanobacterium Synechocystis 6803, methyltransferase-encoding genes were cloned and expressed to pre-methylate the exogenous DNA before Synechocystis transformation. Eventually, the transformation efficiency was increased by two orders of magnitude in Synechocystis. This research has demonstrated the use of cyanobacteria as cell factories to produce 3HB directly from light and CO2, and developed new synthetic biology tools for cyanobacteria.
ContributorsWang, Bo (Author) / Meldrum, Deirdre R (Thesis advisor) / Zhang, Weiwen (Committee member) / Sandrin, Todd R. (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2014
154524-Thumbnail Image.png
Description
This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first

This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first time, the renewable production of benzaldehyde and benzyl alcohol has been achieved in recombinant E. coli with a maximum titer of 114 mg/L of benzyl alcohol. Further strain development to knockout endogenous alcohol dehydrogenase has reduced the in vivo degradation of benzaldehyde by 9-fold, representing an improved host for the future production of benzaldehyde as a sole product. In addition, a novel alternative pathway for the production of protocatechuate (PCA) and catechol from the endogenous metabolite chorismate is demonstrated. Titers for PCA and catechol were achieved at 454 mg/L and 630 mg/L, respectively. To explore potential routes for improved aromatic product yields, an in silico model using elementary mode analysis was developed. From the model, stoichiometric optimums maximizing both product-to-substrate and biomass-to-substrate yields were discovered in a co-fed model using glycerol and D-xylose as the carbon substrates for the biosynthetic production of catechol. Overall, the work presented in this dissertation highlights contributions to the field of metabolic engineering through novel pathway design for the biosynthesis of industrially relevant aromatic fine chemicals and the use of in silico modelling to identify novel approaches to increasing aromatic product yields.
ContributorsPugh, Shawn (Author) / Nielsen, David (Thesis advisor) / Dai, Lenore (Committee member) / Torres, Cesar (Committee member) / Lind, Mary Laura (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
155516-Thumbnail Image.png
Description
The basic scheme for photosynthesis suggests the two photosystems existing in parity with one another. However, cyanobacteria typically maintain significantly more photosystem I (PSI) than photosystem II (PSII) complexes. I set out to evaluate this disparity through development and analysis of multiple mutants of the genetically tractable cyanobacterium Synechocystis sp.

The basic scheme for photosynthesis suggests the two photosystems existing in parity with one another. However, cyanobacteria typically maintain significantly more photosystem I (PSI) than photosystem II (PSII) complexes. I set out to evaluate this disparity through development and analysis of multiple mutants of the genetically tractable cyanobacterium Synechocystis sp. PCC 6803 that exhibit a range of expression levels of the main proteins present in PSI (Chapter 2). One hypothesis was that the higher abundance of PSI in this organism is used to enable more cyclic electron flow (CEF) around PSI to contribute to greater ATP synthesis. Results of this study show that indeed CEF is enhanced by the high amount of PSI present in WT. On the other hand, mutants with less PSI and less cyclic electron flow appeared able to maintain healthy levels of ATP synthesis through other compensatory mechanisms. Reduction in PSI abundance is naturally associated with reduced chlorophyll content, and mutants with less PSI showed greater primary productivity as light intensity increased due to increased light penetration in the cultures. Another question addressed in this research project involved the effect of deletion of flavoprotein 3 (an electron sink for PSI-generated electrons) from mutant strains that produce and secrete a fatty acid (Chapter 3). Removing Flv3 increased fatty acid production, most likely due to increased abundance of reducing equivalents that are key to fatty acid biosynthesis. Additional components of my dissertation research included examination of alkane biosynthesis in Synechocystis (Chapter 4), and effects of attempting to overexpress fibrillin genes for enhancement of stored compounds (Chapter 5). Synechocystis is an excellent platform for metabolic engineering studies with its photosynthetic capability and ease of genetic alteration, and the presented research sheds light on multiple aspects of its fundamental biology.
ContributorsMoore, Vickie (Author) / Vermaas, Willem (Thesis advisor) / Wang, Xuan (Committee member) / Roberson, Robert (Committee member) / Gaxiola, Roberto (Committee member) / Bingham, Scott (Committee member) / Arizona State University (Publisher)
Created2017
155862-Thumbnail Image.png
Description
The engineering of microbial cell factories capable of synthesizing industrially relevant chemical building blocks is an attractive alternative to conventional petrochemical-based production methods. This work focuses on the novel and enhanced biosynthesis of phenol, catechol, and muconic acid (MA). Although the complete biosynthesis from glucose has been previously demonstrated for

The engineering of microbial cell factories capable of synthesizing industrially relevant chemical building blocks is an attractive alternative to conventional petrochemical-based production methods. This work focuses on the novel and enhanced biosynthesis of phenol, catechol, and muconic acid (MA). Although the complete biosynthesis from glucose has been previously demonstrated for all three compounds, established production routes suffer from notable inherent limitations. Here, multiple pathways to the same three products were engineered, each incorporating unique enzyme chemistries and/or stemming from different endogenous precursors. In the case of phenol, two novel pathways were constructed and comparatively evaluated, with titers reaching as high as 377 ± 14 mg/L at a glucose yield of 35.7 ± 0.8 mg/g. In the case of catechol, three novel pathways were engineered with titers reaching 100 ± 2 mg/L. Finally, in the case of MA, four novel pathways were engineered with maximal titers reaching 819 ± 44 mg/L at a glucose yield of 40.9 ± 2.2 mg/g. Furthermore, the unique flexibility with respect to engineering multiple pathways to the same product arises in part because these compounds are common intermediates in aromatic degradation pathways. Expanding on the novel pathway engineering efforts, a synthetic ‘metabolic funnel’ was subsequently constructed for phenol and MA, wherein multiple pathways were expressed in parallel to maximize carbon flux toward the final product. Using this novel ‘funneling’ strategy, maximal phenol and MA titers exceeding 0.5 and 3 g/L, respectively, were achieved, representing the highest achievable production metrics products reported to date.
ContributorsThompson, Brian (Author) / Nielsen, David R (Thesis advisor) / Nannenga, Brent (Committee member) / Green, Matthew (Committee member) / Wang, Xuan (Committee member) / Moon, Tae Seok (Committee member) / Arizona State University (Publisher)
Created2017
187561-Thumbnail Image.png
Description
Lignocellulose, the major structural component of plant biomass, represents arenewable substrate of enormous biotechnological value. Microbial production of chemicals from lignocellulosic biomass is an attractive alternative to chemical synthesis. However, to create industrially competitive strains to efficiently convert lignocellulose to high-value chemicals, current challenges must be addressed. Redox constraints, allosteric regulation, and transport-related limitations

Lignocellulose, the major structural component of plant biomass, represents arenewable substrate of enormous biotechnological value. Microbial production of chemicals from lignocellulosic biomass is an attractive alternative to chemical synthesis. However, to create industrially competitive strains to efficiently convert lignocellulose to high-value chemicals, current challenges must be addressed. Redox constraints, allosteric regulation, and transport-related limitations are important bottlenecks limiting the commercial production of renewable chemicals from lignocellulose. Advances in metabolic engineering techniques have enabled researchers to engineer microbial strains that overcome some of these challenges but new approaches that facilitate the commercial viability of lignocellulose valorization are needed. Biological systems are complex with a plethora of regulatory systems that must be carefully modulated to efficiently produce and excrete the desired metabolites. In this work, I explore metabolic engineering strategies to address some of the biological constraints limiting bioproduction such as redox, allosteric, and transport constraints to facilitate cost-effective lignocellulose bioconversion.
ContributorsOnyeabor, Moses Ekenedilichukwu (Author) / Wang, Xuan (Thesis advisor) / Varman, Arul M (Committee member) / Nannenga, Brent (Committee member) / Nielsen, David R (Committee member) / Geiler-Samerotte, Kerry (Committee member) / Arizona State University (Publisher)
Created2023
154350-Thumbnail Image.png
Description
Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli

Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli BW25113 was explored with the use of synthetic trans-encoded small RNA (sRNA) to achieve greater efficiency. The naturally occurring sRNA MicC was used as a scaffold, and combined on a plasmid with a promoter for anhydrous tetracycline (aTc) and a T1/TE terminator. The coding sequence corresponding to the target binding site for fourteen potentially growth-essential gene targets as well as non-essential lacZ was placed in the seed region of the of the sRNA scaffold and transformed into BW25113, effectively generating a unique strain for each gene target. The BW25113 strain corresponding to each gene target was screened in M9 minimal media; decreased optical density and elongated cell morphology changes were observed and quantified in all induced sRNA cases where growth-essential genes were targeted. Six of the strains targeting different aspects of cell division that effectively suppressed growth and resulted in increased cell size were then screened for viability and metabolic activity in a scaled-up shaker flask experiment; all six strains were shown to be viable during stationary phase, and a metabolite analysis showed increased specific glucose consumption rates in induced strains, with unaffected specific glucose consumption rates in uninduced strains. The growth suppression, morphology and metabolic activity of the induced strains in BW25113 was compared to the bacteriostatic additives chloramphenicol, tetracycline, and streptomycin. At this same scale, the sRNA plasmid targeting the gene murA was transformed into BW25113 pINT-GA, a phenylalanine overproducer with the feedback resistant genes aroG and pheA overexpressed. Two induction times were explored during exponential phase, and while the optimal induction time was found to increase titer and yield amongst the BW25113 pINT-GA murA sRNA variant, overall this did not have as great a titer or yield as the BW25113 pINT-GA strain without the sRNA plasmid; this may be a result of the cell filamentation.
ContributorsHerschel, Daniel Jordan (Author) / Nielsen, David R (Thesis advisor) / Torres, César I (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
157715-Thumbnail Image.png
Description
Aromatic compounds have traditionally been generated via petroleum feedstocks and have wide ranging applications in a variety of fields such as cosmetics, food, plastics, and pharmaceuticals. Substantial improvements have been made to sustainably produce many aromatic chemicals from renewable sources utilizing microbes as bio-factories. By assembling and optimizing

Aromatic compounds have traditionally been generated via petroleum feedstocks and have wide ranging applications in a variety of fields such as cosmetics, food, plastics, and pharmaceuticals. Substantial improvements have been made to sustainably produce many aromatic chemicals from renewable sources utilizing microbes as bio-factories. By assembling and optimizing native and non-native pathways to produce natural and non-natural bioproducts, the diversity of biochemical aromatics which can be produced is constantly being improved upon. One such compound, 2-Phenylethanol (2PE), is a key molecule used in the fragrance and food industries, as well as a potential biofuel. Here, a novel, non-natural pathway was engineered in Escherichia coli and subsequently evaluated. Following strain and bioprocess optimization, accumulation of inhibitory acetate byproduct was reduced and 2PE titers approached 2 g/L – a ~2-fold increase over previously implemented pathways in E. coli. Furthermore, a recently developed mechanism to

allow E. coli to consume xylose and glucose, two ubiquitous and industrially relevant microbial feedstocks, simultaneously was implemented and systematically evaluated for its effects on L-phenylalanine (Phe; a precursor to many microbially-derived aromatics such as 2PE) production. Ultimately, by incorporating this mutation into a Phe overproducing strain of E. coli, improvements in overall Phe titers, yields and sugar consumption in glucose-xylose mixed feeds could be obtained. While upstream efforts to improve precursor availability are necessary to ultimately reach economically-viable production, the effect of end-product toxicity on production metrics for many aromatics is severe. By utilizing a transcriptional profiling technique (i.e., RNA sequencing), key insights into the mechanisms behind styrene-induced toxicity in E. coli and the cellular response systems that are activated to maintain cell viability were obtained. By investigating variances in the transcriptional response between styrene-producing cells and cells where styrene was added exogenously, better understanding on how mechanisms such as the phage shock, heat-shock and membrane-altering responses react in different scenarios. Ultimately, these efforts to diversify the collection of microbially-produced aromatics, improve intracellular precursor pools and further the understanding of cellular response to toxic aromatic compounds, give insight into methods for improved future metabolic engineering endeavors.
ContributorsMachas, Michael (Author) / Nielsen, David R (Thesis advisor) / Haynes, Karmella (Committee member) / Wang, Xuan (Committee member) / Nannenga, Brent (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2019
161493-Thumbnail Image.png
Description
Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown

Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown to be highly differentially expressed in E. coli upon styrene exposure were further investigated by testing the effects of their deletion and overexpression on styrene tolerance and growth. It was found that plsX, a gene responsible for the phospholipid formation in membranes, had the most promising results when overexpressed at 10 µM IPTG, with a relative OD600 of 706 ± 117% at 175 mg/L styrene when compared to the control plasmid at the same concentration. This gene is likely to be effective target when engineering styrene- and other aromatic-producing strains, increasing titers by reducing their cytotoxicity.In the second study, the goal is to engineer the cyanobacterium Synechococcus sp. PCC 7002 for the overproduction of L-serine. As a robust, photosynthetic bacteria, it has potential for being used in such-rich states to capture CO2 and produce industrially relevant products. In order to increase L-serine titers, a key degradation gene, ilvA, must be removed. While ilvA is responsible for degrading L-serine into pyruvate, it is also responsible for initiating the only known pathway for the production of isoleucine. Herein, we constructed a plasmid containing the native A0730 gene in order to investigate its potential to restore isoleucine production. If functional, a Synechococcus sp. PCC 7002 ΔilvA strain can then be engineered with minimal effects on growth and an expected increase in L-serine accumulation.
ContributorsAbed, Omar (Author) / Nielsen, David R (Thesis advisor) / Varman, Arul M (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2021
168596-Thumbnail Image.png
Description
Lignin is a naturally abundant source of aromatic carbon but is largely underutilized inindustry because it is difficult to decompose. Recent research activity has targeted the development of a biological platform for the conversion of lignin and lignin-derived feedstock. Corynebacterium glutamicum is a standout candidate for the bacterial depolymerization and assimilation of lignin

Lignin is a naturally abundant source of aromatic carbon but is largely underutilized inindustry because it is difficult to decompose. Recent research activity has targeted the development of a biological platform for the conversion of lignin and lignin-derived feedstock. Corynebacterium glutamicum is a standout candidate for the bacterial depolymerization and assimilation of lignin because of its performance as an industrial producer of amino acids, resistance to aromatic compounds in lignin, and low extracellular protease activity. Under the current study, nine experimental strains of C. glutamicum were engineered with sequencing-confirmed plasmids to overexpress and secrete lignin-modifying enzymes with the eventual goal of using lignin as raw feed for the sustainable production of valuable chemicals. Within the study, laccase and peroxidase activity were discovered to be decreased in C. glutamicum culture media. For laccase the decrease reached statistical significance, with an activity of about 10.9 U/L observed in water but only about 7.56 U/L and 7.42 U/L in fresh and spent BHI media, respectively, despite the same amounts of enzyme being added. Hypothesized reasons for this inhibitory effect are discussed here, but further work is needed to identify causative factors and realize the potential of C. glutamicum for waste biomass valorization.
ContributorsEllis, Dylan Scott (Author) / Varman, Arul M (Thesis advisor) / Lammers, Peter J (Committee member) / Long, Timothy E (Committee member) / Arizona State University (Publisher)
Created2022