Matching Items (7)
Filtering by

Clear all filters

136336-Thumbnail Image.png
Description
Hydrogen has the potential to be a highly efficient fuel source. Its current production via steam reformation of natural gas, however, consumes a large amount of energy and gives off carbon dioxide. A newer method has since surfaced: using a microorganism's metabolism to drive hydrogen production. In this study, the

Hydrogen has the potential to be a highly efficient fuel source. Its current production via steam reformation of natural gas, however, consumes a large amount of energy and gives off carbon dioxide. A newer method has since surfaced: using a microorganism's metabolism to drive hydrogen production. In this study, the conditions for maximum hydrogen production in Heliobacterium modesticaldum were identified and assessed. The cells were grown under varying conditions and their headspaces were sampled using a gas chromatogram to measure the amount of accumulated hydrogen during each condition. Two cell batches were grown under nitrogen-fixing conditions (-NH4+), while the other two cell batches were grown under non-nitrogen-fixing conditions (+NH4+). The headspaces were then exchanged with either nitrogen (N2) or argon (Ar2). It was found that the condition for which the most hydrogen was produced was when the cells were grown under nitrogen-fixing conditions and the headspace was exchanged with argon. These results suggest that most of Heliobacteria modesticaldum's hydrogen production is due to nitrogenase activity rather than hydrogenase activity. Further research is recommended to quantify the roles of nitrogenase, [NiFe] hydrogenase, and [FeFe] hydrogenase.
ContributorsMcmahon, Savanah Dior (Author) / Redding, Kevin (Thesis director) / Ghirlanda, Giovanna (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Music (Contributor)
Created2015-05
136243-Thumbnail Image.png
Description
ABSTRACT:
The experiment was conducted to analyze the role of menaquinone (MQ) in heliobacteria’s reaction center (HbRC). Their photosynthetic apparatus is a homodimeric of type I reaction center (1). HbRC contains these cofactors: P800 (special pair cholorphyll), A0 (8-hydroxy-chlorophyll [Chl] a), and FX (iron-sulfur cluster). The MQ factor is bypassed during

ABSTRACT:
The experiment was conducted to analyze the role of menaquinone (MQ) in heliobacteria’s reaction center (HbRC). Their photosynthetic apparatus is a homodimeric of type I reaction center (1). HbRC contains these cofactors: P800 (special pair cholorphyll), A0 (8-hydroxy-chlorophyll [Chl] a), and FX (iron-sulfur cluster). The MQ factor is bypassed during the electron transfer process in HbRC. Electrons from the excited state of P800 (P800*) are transported to A0 and then directly to Fx. The hypothesis is that when electrons are photoaccumulated at Fx, and without the presence of any electron acceptors to the cluster, they would be transferred to MQ, and reduce it to MQH2 (quinol). Experiments conducted in the past with HbRC within the cell membranes yielded data that supported this hypothesis (Figures 4 and 5). We conducted a new experiment based on that foundation with HbRC, isolated from cell membrane. Two protein assays were prepared with cyt c553 and ascorbate in order to observe this phenomenon. The two samples were left in the glove box for several days for equilibration and then exposed to light in different intensity and periods. Their absorption was monitored at 800 nm for P800 or 554 nm for cyt c553 to observe their oxidation and reduction processes. The measurements were performed with the JTS-10 spectrophotometer. The data obtained from these experiments support the theory that P800+ reduced by the charge recombination of P800+Fx-. However, it did not confirm the reduction of P800+ done by cyt c553¬ which eventually lead to a net accumulation of oxidized cyt c553; instead it revealed another factor that could reduce P800+ faster and more efficient than cyt c553 (0.5 seconds vs several seconds), which could be MQ. More experiments need to be done in order to confirm this result. Hence, the data collected from this experiment have yet to support the theory of MQ being reduced to MQH2 outside the bacterial membranes.
ContributorsNguyen, Phong Thien Huynh (Author) / Redding, Kevin (Thesis director) / Van Horn, Wade (Committee member) / Wachter, Rebekka (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
133710-Thumbnail Image.png
Description
Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can fix nitrogen (N2) and produce molecular hydrogen (H2). Recently, the Redding and Jones labs created a microbial photoelectrosynthesis cell that utilized these properties to produce molecular hydrogen using electrons provided by a cathode via a chemical mediator. Although this light-driven

Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can fix nitrogen (N2) and produce molecular hydrogen (H2). Recently, the Redding and Jones labs created a microbial photoelectrosynthesis cell that utilized these properties to produce molecular hydrogen using electrons provided by a cathode via a chemical mediator. Although this light-driven creation of fuel within a microbial electrochemical cell was the first of its kind, its production rate of hydrogen was low. It was hypothesized that the injection of electrons into H. modesticaldum was a rate-limiting step in H2 production. Within the H. modesticaldum genome, there is a gene (HM1_0653) that encodes a multi-heme cytochrome c that may be directly involved in this step. From past transcriptomic experiments, this gene is known to be very poorly expressed in H. modesticaldum. Our hypothesis was that increasing its expression with a strong promoter could result in faster electron transfer, and thus, increased H2 production in the photoelectrosynthesis cell. In order to test this hypothesis, different promoters that could lead to high expression in H. modesticaldum were included with a copy of HM1_0653 in various plasmid constructs that were first cloned into E. coli before being conjugated with H. modesticaldum. Cloning in E. coli was possible with the newly derived transformation system and by reducing the copy-number of the vector system. When overexpressed in E. coli, the protein appeared to be expressed, but its purification proved to be difficult. Moreover, conjugation with H. modesticaldum was not achieved. Our results are consistent with the idea that high level overexpression in H. modesticaldum was toxic. An inducible promoter may circumvent these issues and prove more successful in future experiments.
ContributorsSmith, Chelsea Elizabeth (Author) / Redding, Kevin (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134538-Thumbnail Image.png
Description
Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can produce molecular hydrogen (H2) when it is fixing dinitrogen (N2). In addition, electrons can be injected into this organism via an electrode and redox mediator in a light-dependent fashion, as shown recently by the Redding and Jones research groups. These

Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can produce molecular hydrogen (H2) when it is fixing dinitrogen (N2). In addition, electrons can be injected into this organism via an electrode and redox mediator in a light-dependent fashion, as shown recently by the Redding and Jones research groups. These factors make H. modesticaldum an ideal organism for use in a microbial photoelectrosynthesis cell, in which electricity can be used to power specific metabolic processes that produce a desired compound (e.g. H2). However, the injection of electrons into this organism is not optimal, which may limit the H2 production rate. There is a gene (HM1_0653) in the genome encoding a multi-heme cytochrome c that is similar to the proteins known to be used for exit of electrons in the well- known electrode-respiring bacteria (e.g. Geobacteria). RNA-sequencing in the Redding lab has shown that the HM1_0653 gene is very poorly expressed in H. modesticaldum. Boosting expression of this cytochrome could lead to faster electron transfer into the cells and thereby more H2 production via photoelectrosynthesis. In order to gain a deeper understanding of this protein, it was expressed in E.coli by two different versions: (1) the entire gene and (2) a truncated gene with an additional hexahistidine tag (truncHM1_0653). Both cultures had a pink color, indicating the biosynthesis of cytochrome. It was discovered that the HM1_0653 protein was likely released into the medium and shows the most promise for ease of purification of HM1_0653. Furthermore, we explored protein expression in H. modesticaldum using the current transformation system in the Redding Lab, but the combination of gene toxicity and copy number of the vector resulted in cloning difficulties in E.coli. An alternative vector may prove more successful.
ContributorsHerrera-Theut, Kathryn Ann (Author) / Redding, Kevin (Thesis director) / Jones, Anne (Committee member) / Torres, Cesar (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132854-Thumbnail Image.png
Description
The Heliobacterial Reaction Center (HbRC) is the simplest Type I Reaction Center (RC) known today. However, upon illumination it has been found to produce menaquinol, and this has led to experiments investigating the function of this reduction scheme. The goal of the experiment was to investigate the mechanisms of menaquinol

The Heliobacterial Reaction Center (HbRC) is the simplest Type I Reaction Center (RC) known today. However, upon illumination it has been found to produce menaquinol, and this has led to experiments investigating the function of this reduction scheme. The goal of the experiment was to investigate the mechanisms of menaquinol production through the use of Photosystem II (PSII) herbicides that are known to inhibit the QB quinone site in Type II RCs. Seven herbicides were chosen, and out of all of them terbuthylazine showed the greatest effect on the RC in isolated membranes when Transient Absorption Spectroscopy was used. In addition, terbuthylazine decreased menaquinone reduction to menaquinol by ~72%, slightly more than the reported effect of teburtryn (68%)1. In addition, terbuthylazine significantly impacted growth of whole cells under high light more than terbutryn.
ContributorsOdeh, Ahmad Osameh (Author) / Redding, Kevin (Thesis director) / Woodbury, Neal (Committee member) / Allen, James (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148379-Thumbnail Image.png
Description

Heliobacteria are an anaerobic phototroph that require carbon sources such as pyruvate, <br/>lactate, or acetate for growth (Sattley, et. al. 2008). They are known for having one of the <br/>simplest phototrophic systems, the central component of which is a Type I reaction center (RC) <br/>that pumps protons to generate the

Heliobacteria are an anaerobic phototroph that require carbon sources such as pyruvate, <br/>lactate, or acetate for growth (Sattley, et. al. 2008). They are known for having one of the <br/>simplest phototrophic systems, the central component of which is a Type I reaction center (RC) <br/>that pumps protons to generate the electrochemical gradient for making ATP. Heliobacteria <br/>preform cyclic electron flow (CEF) with the RC in the light but can also grow chemotropically in <br/>the dark. Many anaerobes like heliobacteria, such as other members of the class Clostridia, <br/>possess the capability to produce hydrogen via a hydrogenase enzyme in the cell, as protons can <br/>serve as an electron acceptor in anaerobic metabolism. However, the species of heliobacteria <br/>studied here, H. modesticaldum have been seen to produce hydrogen via their nitrogenase <br/>enzyme but not when this enzyme is inactive. This study aimed to investigate if the reason for <br/>their lack of hydrogen production was due to a lack of an active hydrogenase enzyme, possibly <br/>indicating that the genes required for activity were lost by an H. modesticaldum ancestor. This <br/>was done by introducing genes encoding a clostridial [FeFe] hydrogenase from C. thermocellum<br/>via conjugation and measuring hydrogen production in the transformant cells. Transformant cells <br/>produced hydrogen and cells without the genes did not, meaning that the heliobacteria ferredoxin <br/>was capable of donating electrons to the foreign hydrogenase to make hydrogen. Because the <br/>[FeFe] hydrogenase must receive electrons from the cytosolic ferredoxin, it was hypothesized <br/>that hydrogen production in heliobacteria could be used to probe the redox state of the ferredoxin <br/>pool in conditions of varying electron availability. Results of this study showed that hydrogen <br/>production was affected by electron availability variations due to varying pyruvate <br/>concentrations in the media, light vs dark environment, use acetate as a carbon source, and being <br/>provided external electron donors. Hydrogen production, therefore, was predicted to be an <br/>effective indicator of electron availability in the reduced ferredoxin pool.

ContributorsVilaboy, Tatum (Author) / Redding, Kevin (Thesis director) / Ghirlanda, Giovanna (Committee member) / School of Life Sciences (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131767-Thumbnail Image.png
Description
The heliobacteria, a family of anoxygenic phototrophs, are significant to photosynthesis evolution research, as they possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria may also grow chemotrophically via pyruvate metabolism in the absence of light. In Heliobacterium modesticaldum, the cytochrome bc complex is

The heliobacteria, a family of anoxygenic phototrophs, are significant to photosynthesis evolution research, as they possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria may also grow chemotrophically via pyruvate metabolism in the absence of light. In Heliobacterium modesticaldum, the cytochrome bc complex is responsible for oxidizing menaquinol and reducing cytochrome c553 in the electron flow cycle used for phototrophy. However, there is no known electron acceptor for cytochrome c553 other than the photosynthetic reaction center. Therefore, it was hypothesized that the cytochrome bc complex is necessary for phototrophy, but unnecessary for chemotrophic growth in the dark. Under this hypothesis, a mutant of H. modesticaldum lacking the cytochrome bc complex was predicted to be viable, but non-phototrophic. In this project, a two-step method for CRISPR-based genome editing was used in H. modesticaldum to delete the genes encoding the cytochrome bc complex. Genotypic analysis verified the deletion of the petC, B, D, and A genes encoding the catalytic components of complex. Spectroscopic studies revealed that re-reduction of cytochrome c553 after flash-induced photo-oxidation was ~130 to 190 times slower in the ∆petCBDA mutant compared to wildtype, phenotypically confirming the removal of the cytochrome bc complex. The resulting ∆petCBDA mutant was unable to grow phototrophically, instead relying on pyruvate metabolism to grow chemotrophically as does wildtype in the dark.
ContributorsLeung, Sabrina (Author) / Redding, Kevin (Thesis director) / Liu, Wei (Committee member) / Vermaas, Wim (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05