Matching Items (2)
Filtering by

Clear all filters

136336-Thumbnail Image.png
Description
Hydrogen has the potential to be a highly efficient fuel source. Its current production via steam reformation of natural gas, however, consumes a large amount of energy and gives off carbon dioxide. A newer method has since surfaced: using a microorganism's metabolism to drive hydrogen production. In this study, the

Hydrogen has the potential to be a highly efficient fuel source. Its current production via steam reformation of natural gas, however, consumes a large amount of energy and gives off carbon dioxide. A newer method has since surfaced: using a microorganism's metabolism to drive hydrogen production. In this study, the conditions for maximum hydrogen production in Heliobacterium modesticaldum were identified and assessed. The cells were grown under varying conditions and their headspaces were sampled using a gas chromatogram to measure the amount of accumulated hydrogen during each condition. Two cell batches were grown under nitrogen-fixing conditions (-NH4+), while the other two cell batches were grown under non-nitrogen-fixing conditions (+NH4+). The headspaces were then exchanged with either nitrogen (N2) or argon (Ar2). It was found that the condition for which the most hydrogen was produced was when the cells were grown under nitrogen-fixing conditions and the headspace was exchanged with argon. These results suggest that most of Heliobacteria modesticaldum's hydrogen production is due to nitrogenase activity rather than hydrogenase activity. Further research is recommended to quantify the roles of nitrogenase, [NiFe] hydrogenase, and [FeFe] hydrogenase.
ContributorsMcmahon, Savanah Dior (Author) / Redding, Kevin (Thesis director) / Ghirlanda, Giovanna (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Music (Contributor)
Created2015-05
131767-Thumbnail Image.png
Description
The heliobacteria, a family of anoxygenic phototrophs, are significant to photosynthesis evolution research, as they possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria may also grow chemotrophically via pyruvate metabolism in the absence of light. In Heliobacterium modesticaldum, the cytochrome bc complex is

The heliobacteria, a family of anoxygenic phototrophs, are significant to photosynthesis evolution research, as they possess the simplest known photosynthetic apparatus. Although they are photoheterotrophs in the light, the heliobacteria may also grow chemotrophically via pyruvate metabolism in the absence of light. In Heliobacterium modesticaldum, the cytochrome bc complex is responsible for oxidizing menaquinol and reducing cytochrome c553 in the electron flow cycle used for phototrophy. However, there is no known electron acceptor for cytochrome c553 other than the photosynthetic reaction center. Therefore, it was hypothesized that the cytochrome bc complex is necessary for phototrophy, but unnecessary for chemotrophic growth in the dark. Under this hypothesis, a mutant of H. modesticaldum lacking the cytochrome bc complex was predicted to be viable, but non-phototrophic. In this project, a two-step method for CRISPR-based genome editing was used in H. modesticaldum to delete the genes encoding the cytochrome bc complex. Genotypic analysis verified the deletion of the petC, B, D, and A genes encoding the catalytic components of complex. Spectroscopic studies revealed that re-reduction of cytochrome c553 after flash-induced photo-oxidation was ~130 to 190 times slower in the ∆petCBDA mutant compared to wildtype, phenotypically confirming the removal of the cytochrome bc complex. The resulting ∆petCBDA mutant was unable to grow phototrophically, instead relying on pyruvate metabolism to grow chemotrophically as does wildtype in the dark.
ContributorsLeung, Sabrina (Author) / Redding, Kevin (Thesis director) / Liu, Wei (Committee member) / Vermaas, Wim (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05