Matching Items (5)
Filtering by

Clear all filters

150286-Thumbnail Image.png
Description

This doctoral dissertation research aims to develop a comprehensive definition of urban open spaces and to determine the extent of environmental, social and economic impacts of open spaces on cities and the people living there. The approach I take to define urban open space is to apply fuzzy set theory

This doctoral dissertation research aims to develop a comprehensive definition of urban open spaces and to determine the extent of environmental, social and economic impacts of open spaces on cities and the people living there. The approach I take to define urban open space is to apply fuzzy set theory to conceptualize the physical characteristics of open spaces. In addition, a 'W-green index' is developed to quantify the scope of greenness in urban open spaces. Finally, I characterize the environmental impact of open spaces' greenness on the surface temperature, explore the social benefits through observing recreation and relaxation, and identify the relationship between housing price and open space be creating a hedonic model on nearby housing to quantify the economic impact. Fuzzy open space mapping helps to investigate the landscape characteristics of existing-recognized open spaces as well as other areas that can serve as open spaces. Research findings indicated that two fuzzy open space values are effective to the variability in different land-use types and between arid and humid cities. W-Green index quantifies the greenness for various types of open spaces. Most parks in Tempe, Arizona are grass-dominant with higher W-Green index, while natural landscapes are shrub-dominant with lower index. W-Green index has the advantage to explain vegetation composition and structural characteristics in open spaces. The outputs of comprehensive analyses show that the different qualities and types of open spaces, including size, greenness, equipment (facility), and surrounding areas, have different patterns in the reduction of surface temperature and the number of physical activities. The variance in housing prices through the distance to park was, however, not clear in this research. This dissertation project provides better insight into how to describe, plan, and prioritize the functions and types of urban open spaces need for sustainable living. This project builds a comprehensive framework for analyzing urban open spaces in an arid city. This dissertation helps expand the view for urban environment and play a key role in establishing a strategy and finding decision-makings.

ContributorsKim, Won Kyung (Author) / Wentz, Elizabeth (Thesis advisor) / Myint, Soe W (Thesis advisor) / Brazel, Anthony (Committee member) / Guhathakurta, Subhrajit (Committee member) / Arizona State University (Publisher)
Created2011
153721-Thumbnail Image.png
Description
Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research ga

Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research gap in emerging nations concerning this topic. Thus, this research focuses on the assessment of climate impacts related to urbanization on the largest metropolitan area in Latin America: Mexico City.

Numerical simulations using a state-of-the-science regional climate model are utilized to address a trio of scientifically relevant questions with wide global applicability. The importance of an accurate representation of land use and land cover is first demonstrated through comparison of numerical simulations against observations. Second, the simulated effect of anthropogenic heating is quantified. Lastly, numerical simulations are performed using pre-historic scenarios of land use and land cover to examine and quantify the impact of Mexico City's urban expansion and changes in surface water features on its regional climate.
ContributorsBenson-Lira, Valeria (Author) / Georgescu, Matei (Thesis advisor) / Brazel, Anthony (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2015
155721-Thumbnail Image.png
Description
ABSTRACT

Famine is the result of a complex set of environmental and social factors. Climate conditions are established as environmental factors contributing to famine occurrence, often through teleconnective patterns. This dissertation is designed to investigate the combined influence on world famine patterns of teleconnections, specifically the North Atlantic Oscillation (NAO), Southern

ABSTRACT

Famine is the result of a complex set of environmental and social factors. Climate conditions are established as environmental factors contributing to famine occurrence, often through teleconnective patterns. This dissertation is designed to investigate the combined influence on world famine patterns of teleconnections, specifically the North Atlantic Oscillation (NAO), Southern Oscillation (SO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), or regional climate variations such as the South Asian Summer Monsoon (SASM). The investigation is three regional case studies of famine patterns specifically, Egypt, the British Isles, and India.

The first study (published in Holocene) employs the results of a Principal Component Analysis (PCA) yielding a SO-NAO eigenvector to predict major Egyptian famines between AD 1049-1921. The SO-NAO eigenvector (1) successfully discriminates between the 5-10 years preceding a famine and the other years, (2) predicts eight of ten major famines, and (3) correctly identifies fifty out of eighty events (63%) of food availability decline leading up to major famines.

The second study investigates the impact of the NAO, PDO, SO, and AMO on 63 British Isle famines between AD 1049 and 1914 attributed to climate causes in historical texts. Stepwise Regression Analysis demonstrates that the 5-year lagged NAO is the primary teleconnective influence on famine patterns; it successfully discriminates 73.8% of weather-related famines in the British Isles from 1049 to 1914.

The final study identifies the aggregated influence of the NAO, SO, PDO, and SASM on 70 Indian famines from AD 1049 to 1955. PCA results in a NAO-SOI vector and SASM vector that predicts famine conditions with a positive NAO and negative SO, distinct from the secondary SASM influence. The NAO-famine relationship is consistently the strongest; 181 of 220 (82%) of all famines occurred during positive NAO years.

Ultimately, the causes of famine are complex and involve many factors including societal and climatic. This dissertation demonstrates that climate teleconnections impact famine patterns and often the aggregates of multiple climate variables hold the most significant climatic impact. These results will increase the understanding of famine patterns and will help to better allocate resources to alleviate future famines.
ContributorsSantoro, Michael Melton (Author) / Cerveny, Randall S. (Thesis advisor) / McHugh, Kevin (Committee member) / Brazel, Anthony (Committee member) / Balling Jr., Robert C. (Committee member) / Arizona State University (Publisher)
Created2017
149693-Thumbnail Image.png
Description
While there are many elements to consider when determining one's risk of heat or cold stress, acclimation could prove to be an important factor to consider. Individuals who are participating in more strenuous activities, while being at a lower risk, will still feel the impacts of acclimation to an

While there are many elements to consider when determining one's risk of heat or cold stress, acclimation could prove to be an important factor to consider. Individuals who are participating in more strenuous activities, while being at a lower risk, will still feel the impacts of acclimation to an extreme climate. To evaluate acclimation in strenuous conditions, I collected finishing times from six different marathon races: the New York City Marathon (New York City, New York), Equinox Marathon (Fairbanks, Alaska), California International Marathon (Sacramento, California), LIVESTRONG Austin Marathon (Austin, Texas), Cincinnati Flying Pig Marathon (Cincinnati, Ohio), and the Ocala Marathon (Ocala, Florida). Additionally, I collected meteorological variables for each race day and the five days leading up to the race (baseline). I tested these values against the finishing times for the local runners, those from the race state, and visitors, those from other locations. Effects of local acclimation could be evaluated by comparing finishing times of local runners to the change between the race day and baseline weather conditions. Locals experienced a significant impact on finishing times for large changes between race day and the baseline conditions for humidity variables, dew point temperature, vapor pressure, relative humidity, and temperature based variables such as the heat index, temperature and the saturation vapor pressure. Wind speed and pressure values also marked a change in performance, however; pressure was determined to be a larger psychological factor than acclimation factor. The locals also demonstrated an acclimation effect as performance improved when conditions were similar on race day to baseline conditions for the three larger races. Humidity variables had the largest impact on runners when those values increased from training and acclimation values; however increased wind speed appeared to offset increased humidity values. These findings support previous acclimation research stating warm wet conditions are more difficult to acclimate to than warm dry conditions. This research while primarily pertaining to those participating physically demanding activities may also be applied to other large scale events such as festivals, fairs, or concerts.
ContributorsDeBiasse, Kimberly Michelle (Author) / Cerveny, Randall S. (Thesis advisor) / Brazel, Anthony (Committee member) / Selover, Nancy (Committee member) / Arizona State University (Publisher)
Created2011
193008-Thumbnail Image.png
Description
Dust storms have far-reaching human and economic impacts; spreading disease, raspatory and cardiovascular disruption, destruction of property and crops, and death. Understanding of this phenomenon is can help with operational and academic endeavors and alleviate some of these impacts. To accomplish this goal, this dissertation poses a central question: Do

Dust storms have far-reaching human and economic impacts; spreading disease, raspatory and cardiovascular disruption, destruction of property and crops, and death. Understanding of this phenomenon is can help with operational and academic endeavors and alleviate some of these impacts. To accomplish this goal, this dissertation poses a central question: Do dust storms have discreet geographic and temporal characteristics that can aid academic and operational analysis of these storms? To answer this question three case studies were undertaken. The first study constructed an archive of 549 dust rain events across Europe to determine a seasonal pattern. It was discovered that the largest number of events occurred in the Spring season (MAM). Then three individual events across Europe were examined to highlight the synoptic events that control these dust rains. Each event can be closely tied to the movement of the migratory Rossby waves and linked to Saharan dust from North Africa. The second study was a construction of Central Sonoran Desert dust storms from 2009 to 2022 tied to the NAM. HYSPLIT back-trajectories linked the strongest events to source regions mainly from the Southwest along the Gila River from the Gulf of California. As the storms weaken in intensity they drift to the South and Southeast traveling along the Santa Cruz River and its tributaries. The third study was a case study of three large events in the Central Sonoran Desert along the Gila River. This study examines the effects of the local topography, specifically the stand-alone mountain complexes that can block or funnel dust as it moves through the Gila River Valley. In each instance the South Mountain Complex and the Sierra Estrella served as a dust shield containing the highest dust concentrations to the south side of the Gila River Valley. This dissertation has analyzed several of the different elements of dust storms. These elements include the synoptic patterns that drive dust storms, the source regions of dust storms, and the ground level topography that can control their movement. Fundamentally, these findings can enhance our academic understanding of dust storms as well as our operational ability to forecast.
ContributorsWhite, Joshua Randolph (Author) / Cerveny, Randall S. (Thesis advisor) / Balling Jr., Robert C. (Committee member) / Brazel, Anthony (Committee member) / Arizona State University (Publisher)
Created2024