Matching Items (6)
Filtering by

Clear all filters

152183-Thumbnail Image.png
Description
Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as

Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as the key element of a three-level hierarchical vegetation framework for reducing those costs, and a three-step procedure was used to evaluate its effects. A two-step procedure, which involved environmental stratifications and the random walker algorithm, was used for tree density segmentation. I determined whether variation in tone and texture could be reduced within environmental strata, and whether tree density segmentations could be labeled by species associations. At the final level, two tree density segmentations were partitioned into smaller subsets using eCognition in order to label individual species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were used to evaluate whether imagery objects have different mean values from near segmentations as a measure of segmentation accuracy. The two-step procedure was able to delineating tree density segments and label species types robustly, compared to previous hierarchical frameworks. However, eCognition was not able to produce detailed, reasonable image objects with optimal scale parameters for species labeling. This hierarchical vegetation framework is applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating climate change impacts on vegetation at low cost using widely available data and a personal laptop.
ContributorsLiau, Yan-ting (Author) / Franklin, Janet (Thesis advisor) / Turner, Billie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
152681-Thumbnail Image.png
Description
Ephemeral streams in Arizona that are perpendicularly intersected by the Central Arizona Project (CAP) canal have been altered due to partial or complete damming of the stream channel. The dammed upstream channels have experienced decades long cycles of sediment deposition and waterlogging during storm events causing the development of "green-up"

Ephemeral streams in Arizona that are perpendicularly intersected by the Central Arizona Project (CAP) canal have been altered due to partial or complete damming of the stream channel. The dammed upstream channels have experienced decades long cycles of sediment deposition and waterlogging during storm events causing the development of "green-up" zones. This dissertation examines the biogeomorphological effects of damming ephemeral streams caused by the CAP canal by investigating: (1) changes in the preexisting spatial cover of riparian vegetation and how these changes are affected by stream geometry; (2) green-up initiation and evolution; and (3) changes in plant species and community level changes. To the author's knowledge, this is the only study that undertakes an interdisciplinary approach to understanding the environmental responses to anthropogenically-altered ephemeral stream channels. The results presented herein show that vegetation along the upstream section increased by an average of 200,872 m2 per kilometer of the CAP canal over a 28 year period. Vegetation growth was compared to channel widths which share a quasi-linear relationship. Remote sensing analysis of Landsat TM images using an object-oriented approach shows that riparian vegetation cover gradually increased over 28 years. Field studies reveal that the increases in vegetation are attributed to the artificial rise in local base-level upstream created by the canal, which causes water to spill laterally onto the desert floor. Vegetation within the green-up zone varies considerably in comparison to pre-canal construction. Changes are most notable in vegetation community shifts and abundance. The wettest section of the green-up zone contains the greatest density of woody plant stems, the greatest vegetation volume, and a high percentage of herbaceous cover. Vegetation within wetter zones changed from a tree-shrub to a predominantly tree-herb assemblage, whereas desert shrubs located in zones with intermediate moisture have developed larger stems. Results from this study lend valuable insight to green-up processes associated with damming ephemeral streams, which can be applied to planning future canal or dam projects in drylands. Also, understanding the development of the green-up zones provide awareness to potentially avoiding flood damage to infrastructure that may be unknowingly constructed within the slow-growing green-up zone.
ContributorsHamdan, Abeer (Author) / Schmeeckle, Mark (Thesis advisor) / Myint, Soe (Thesis advisor) / Dorn, Ronald (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2014
150070-Thumbnail Image.png
Description
This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The

This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The archaeological record suggests that increases in social complexity were linked to climatic episodes (e.g., favorable climatic conditions coincide with intervals of prosperity or marked social development such as the Neolithic Revolution ca. 11.5 ka BP, the Secondary Products Revolution ca. 6 ka BP, and the Middle Bronze Age ca. 4 ka BP). The opposite can be said about periods of climatic deterioration, when settled villages were abandoned as the inhabitants returned to nomadic or semi nomadic lifestyles (e.g., abandonment of the largest Neolithic farming towns after 8 ka BP and collapse of Bronze Age towns and cities after 3.5 ka BP during the Late Bronze Age). This study develops chronologically refined models of past vegetation from 12 to 2.5 ka BP, at 500 year intervals, using GIS, remote sensing and statistical modeling tools (MAXENT) that derive from species distribution modeling. Plants are sensitive to alterations in their environment and respond accordingly. Because of this, they are valuable indicators of landscape change. An extensive database of historical and field gathered observations was created. Using this database as well as environmental variables that include temperature and precipitation surfaces for the whole study period (also at 500 year intervals), the potential vegetation of the region was modeled. Through this means, a continuous chronology of potential vegetation of the Southern Levantwas built. The produced paleo-vegetation models generally agree with the proxy records. They indicate a gradual decline of forests and expansion of steppe and desert throughout the Holocene, interrupted briefly during the Mid Holocene (ca. 4 ka BP, Middle Bronze Age). They also suggest that during the Early Holocene, forest areas were extensive, spreading into the Northern Negev. The two remaining forested areas in the Northern and Southern Plateau Region in Jordan were also connected during this time. The models also show general agreement with the major cultural developments, with forested areas either expanding or remaining stable during prosperous periods (e.g., Pre Pottery Neolithic and Middle Bronze Age), and significantly contracting during moments of instability (e.g., Late Bronze Age).
ContributorsSoto-Berelov, Mariela (Author) / Fall, Patricia L. (Thesis advisor) / Myint, Soe (Committee member) / Turner, Billie L (Committee member) / Falconer, Steven (Committee member) / Arizona State University (Publisher)
Created2011
141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

ContributorsGober, Patricia (Author) / Brazel, Anthony J. (Author) / Quay, Ray (Author) / Myint, Soe (Author) / Grossman-Clarke, Susanne (Author) / Miller, Adam (Author) / Rossi, Steve (Author)
Created2010-01-04
141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

ContributorsGober, Patricia (Author) / Middel, Ariane (Author) / Brazel, Anthony J. (Author) / Myint, Soe (Author) / Chang, Heejun (Author) / Duh, Jiunn-Der (Author) / House-Peters, Lily (Author)
Created2013-05-16
Description

The Kilombero Valley lies at the intersection of a network of protected areas that cross Tanzania. The wetlands and woodlands of the Valley, as well as the forest of surrounding mountains are abundant in biodiversity and are considered to be critical areas for conservation. This area, however, is also the

The Kilombero Valley lies at the intersection of a network of protected areas that cross Tanzania. The wetlands and woodlands of the Valley, as well as the forest of surrounding mountains are abundant in biodiversity and are considered to be critical areas for conservation. This area, however, is also the home to more than a half million people, primarily poor smallholder farmers. In an effort to support the livelihoods and food security of these farmers and the larger Tanzanian population, the country has recently targeted a series of programs to increase agricultural production in the Kilombero Valley and elsewhere in the country. Bridging concepts and methods from land change science, political ecology, and sustainable livelihoods, I present an integrated assessment of the linkages between development and conservation efforts in the Kilombero Valley and the implications for food security.

This dissertation uses three empirical studies to understand the process of development in the Kilombero Valley and to link the priorities and perceptions of conservation and development efforts to the material outcomes in food security and land change. The first paper of this dissertation examines the changes in land use in the Kilombero Valley between 1997 and 2014 following the privatization of agriculture and the expansion of Tanzania’s Kilimo Kwanza program. Remote sensing analysis reveals a two-fold increase in agricultural area during this short time, largely at the expense of forest. Protected areas in some parts of the Valley appear to be deterring deforestation, but rapid agricultural growth, particularly surrounding a commercial rice plantation, has led to loss of extant forest and sustained habitat fragmentation. The second paper focuses examines livelihood strategies in the Valley and claims regarding the role of agrobiodiversity in food security.

The results of household survey reveal no difference or lower food security among households that diversify their agricultural activities. Some evidence, however, emerges regarding the importance of home gardens and crop diversification for dietary diversity. The third paper considers the competing discourses surrounding conservation and development in the Kilombero Valley. Employing q-method, this paper discerns four key viewpoints among various stakeholders in the Valley. While there are some apparently intractable distinctions between among these discourses, consensus regarding the importance of wildlife corridors and the presence of boundary-crossing individuals provide the promise of collaboration and compromise.

ContributorsConnors, John Patrick (Author) / Turner, Billie Lee (Thesis advisor) / Eakin, Hallie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2015