Matching Items (6)
Filtering by

Clear all filters

152416-Thumbnail Image.png
Description
Droughts are a common phenomenon of the arid South-west USA climate. Despite water limitations, the region has been substantially transformed by agriculture and urbanization. The water requirements to support these human activities along with the projected increase in droughts intensity and frequency challenge long term sustainability and water security, thus

Droughts are a common phenomenon of the arid South-west USA climate. Despite water limitations, the region has been substantially transformed by agriculture and urbanization. The water requirements to support these human activities along with the projected increase in droughts intensity and frequency challenge long term sustainability and water security, thus the need to spatially and temporally characterize land use/land cover response to drought and quantify water consumption is crucial. This dissertation evaluates changes in `undisturbed' desert vegetation in response to water availability to characterize climate-driven variability. A new model coupling phenology and spectral unmixing was applied to Landsat time series (1987-2010) in order to derive fractional cover (FC) maps of annuals, perennials, and evergreen vegetation. Results show that annuals FC is controlled by short term water availability and antecedent soil moisture. Perennials FC follow wet-dry multi-year regime shifts, while evergreen is completely decoupled from short term changes in water availability. Trend analysis suggests that different processes operate at the local scale. Regionally, evergreen cover increased while perennials and annuals cover decreased. Subsequently, urban land cover was compared with its surrounding desert. A distinct signal of rain use efficiency and aridity index was documented from remote sensing and a soil-water-balance model. It was estimated that a total of 295 mm of water input is needed to sustain current greenness. Finally, an energy balance model was developed to spatio-temporally estimate evapotranspiration (ET) as a proxy for water consumption, and evaluate land use/land cover types in response to drought. Agricultural fields show an average ET of 9.3 mm/day with no significant difference between drought and wet conditions, implying similar level of water usage regardless of climatic conditions. Xeric neighborhoods show significant variability between dry and wet conditions, while mesic neighborhoods retain high ET of 400-500 mm during drought due to irrigation. Considering the potentially limited water availability, land use/land cover changes due to population increases, and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.
ContributorsKaplan, Shai (Author) / Myint, Soe Win (Thesis advisor) / Brazel, Anthony J. (Committee member) / Georgescu, Matei (Committee member) / Arizona State University (Publisher)
Created2014
153721-Thumbnail Image.png
Description
Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research ga

Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research gap in emerging nations concerning this topic. Thus, this research focuses on the assessment of climate impacts related to urbanization on the largest metropolitan area in Latin America: Mexico City.

Numerical simulations using a state-of-the-science regional climate model are utilized to address a trio of scientifically relevant questions with wide global applicability. The importance of an accurate representation of land use and land cover is first demonstrated through comparison of numerical simulations against observations. Second, the simulated effect of anthropogenic heating is quantified. Lastly, numerical simulations are performed using pre-historic scenarios of land use and land cover to examine and quantify the impact of Mexico City's urban expansion and changes in surface water features on its regional climate.
ContributorsBenson-Lira, Valeria (Author) / Georgescu, Matei (Thesis advisor) / Brazel, Anthony (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2015
158025-Thumbnail Image.png
Description
Drawn from a trio of manuscripts, this dissertation evaluates the sustainability contributions and implications of deploying underutilized spaces for alternative uses at multiple scales: urban, regional and continental. The first paper considers the use of underutilized spaces at the urban scale for urban agriculture (UA) to meet local sustainability goals

Drawn from a trio of manuscripts, this dissertation evaluates the sustainability contributions and implications of deploying underutilized spaces for alternative uses at multiple scales: urban, regional and continental. The first paper considers the use of underutilized spaces at the urban scale for urban agriculture (UA) to meet local sustainability goals in Phoenix, Arizona. Through a data-driven analysis, it demonstrates UA can meet 90% of annual demand for fresh produce, supply local produce in all food deserts, reduce areas underserved by public parks by 60%, and displace >50,000 tons of carbon-dioxide emissions from buildings.

The second paper considers marginal agricultural land use for bioenergy crop cultivation to meet future liquid fuels demand from cellulosic biofuels sustainably and profitably. At a wholesale fuel price of $4 gallons-of-gasoline-equivalent, 30 to 90.7 billion gallons of cellulosic biofuels can be supplied by converting 22 to 79.3 million hectares of marginal lands in the Eastern United States (U.S.). Displacing marginal croplands (9.4-13.7 million hectares) reduces stress on water resources by preserving soil moisture. This displacement is comparable to existing land use for first-generation biofuels, limiting food supply impacts. Coupled modeling reveals positive hydroclimate feedback on bioenergy crop yields that moderates the land footprint.

The third paper examines the sustainability implications of expanding use of marginal lands for corn cultivation in the Western Corn Belt, a commercially important and environmentally sensitive U.S. region. Corn cultivation on lower quality lands, which tend to overlap with marginal agricultural lands, is shown to be nearly three times more sensitive to changes in crop prices. Therefore, corn cultivation disproportionately expanded into these lands following price spikes.

Underutilized spaces can contribute towards sustainability at small and large scales in a complementary fashion. While supplying fresh produce locally and delivering other benefits in terms of energy use and public health, UA can also reduce pressures on croplands and complement non-urban food production. This complementarity can help diversify agricultural land use for meeting other goals, like supplying biofuels. However, understanding the role of market forces and economic linkages is critical to anticipate any unintended consequences due to such re-organization of land use.
ContributorsULUDERE ARAGON, Nazli Zeynep (Author) / Georgescu, Matei (Thesis advisor) / Hanemann, William M (Committee member) / Parker, Nathan C. (Committee member) / Rey, Sergio (Committee member) / Arizona State University (Publisher)
Created2020
158516-Thumbnail Image.png
Description
Geographically Weighted Regression (GWR) has been broadly used in various fields to

model spatially non-stationary relationships. Classic GWR is considered as a single-scale model that is based on one bandwidth parameter which controls the amount of distance-decay in weighting neighboring data around each location. The single bandwidth in GWR assumes that

Geographically Weighted Regression (GWR) has been broadly used in various fields to

model spatially non-stationary relationships. Classic GWR is considered as a single-scale model that is based on one bandwidth parameter which controls the amount of distance-decay in weighting neighboring data around each location. The single bandwidth in GWR assumes that processes (relationships between the response variable and the predictor variables) all operate at the same scale. However, this posits a limitation in modeling potentially multi-scale processes which are more often seen in the real world. For example, the measured ambient temperature of a location is affected by the built environment, regional weather and global warming, all of which operate at different scales. A recent advancement to GWR termed Multiscale GWR (MGWR) removes the single bandwidth assumption and allows the bandwidths for each covariate to vary. This results in each parameter surface being allowed to have a different degree of spatial variation, reflecting variation across covariate-specific processes. In this way, MGWR has the capability to differentiate local, regional and global processes by using varying bandwidths for covariates. Additionally, bandwidths in MGWR become explicit indicators of the scale at various processes operate. The proposed dissertation covers three perspectives centering on MGWR: Computation; Inference; and Application. The first component focuses on addressing computational issues in MGWR to allow MGWR models to be calibrated more efficiently and to be applied on large datasets. The second component aims to statistically differentiate the spatial scales at which different processes operate by quantifying the uncertainty associated with each bandwidth obtained from MGWR. In the third component, an empirical study will be conducted to model the changing relationships between county-level socio-economic factors and voter preferences in the 2008-2016 United States presidential elections using MGWR.
ContributorsLi, Ziqi (Author) / Fotheringham, A. Stewart (Thesis advisor) / Goodchild, Michael F. (Committee member) / Li, Wenwen (Committee member) / Arizona State University (Publisher)
Created2020
158355-Thumbnail Image.png
Description

Exertional heat stroke continues to be one of the leading causes of illness and death in sport in the United States, with an athlete’s experienced microclimate varying by venue design and location. A limited number of studies have attempted to determine the relationship between observed wet bulb globe temperature (WBGT)

Exertional heat stroke continues to be one of the leading causes of illness and death in sport in the United States, with an athlete’s experienced microclimate varying by venue design and location. A limited number of studies have attempted to determine the relationship between observed wet bulb globe temperature (WBGT) and WBGT derived from regional weather station data. Moreover, only one study has quantified the relationship between regionally modeled and on-site measured WBGT over different athletic surfaces (natural grass, rubber track, and concrete tennis court). The current research expands on previous studies to examine how different athletic surfaces influence the thermal environment in the Phoenix Metropolitan Area using a combination of fieldwork, modeling, and statistical analysis. Meteorological data were collected from 0700–1900hr across 6 days in June and 5 days in August 2019 in Tempe, Arizona at various Sun Devil Athletics facilities. This research also explored the influence of surface temperatures on WBGT and the changes projected under a future warmer climate. Results indicate that based on American College of Sports Medicine guidelines practice would not be cancelled in June (WBGT≥32.3°C); however, in August, ~33% of practice time was lost across multiple surfaces. The second-tier recommendations (WBGT≥30.1°C) to limit intense exercise were reached an average of 7 hours each day for all surfaces in August. Further, WBGT was calculated using data from four Arizona Meteorological Network (AZMET) weather stations to provide regional WBGT values for comparison. The on-site (field/court) WBGT values were consistently higher than regional values and significantly different (p<0.05). Thus, using regionally-modeled WBGT data to guide activity or clothing modification for heat safety may lead to misclassification and unsafe conditions. Surface temperature measurements indicate a maximum temperature (170°F) occurring around solar noon, yet WBGT reached its highest level mid-afternoon and on the artificial turf surface (2–5PM). Climate projections show that WBGT values are expected to rise, further restricting the amount of practice and games than can take place outdoors during the afternoon. The findings from this study can be used to inform athletic trainers and coaches about the thermal environment through WBGT values on-field.

ContributorsGuyer, Haven Elizabeth (Author) / Vanos, Jennifer K. (Thesis advisor) / Georgescu, Matei (Thesis advisor) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2020
158325-Thumbnail Image.png
Description
Humans have modified land systems for centuries in pursuit of a wide range of social and ecological benefits. Recent decades have seen an increase in the magnitude and scale of land system modification (e.g., the Anthropocene) but also a growing recognition and interest in generating land systems that balance environmental

Humans have modified land systems for centuries in pursuit of a wide range of social and ecological benefits. Recent decades have seen an increase in the magnitude and scale of land system modification (e.g., the Anthropocene) but also a growing recognition and interest in generating land systems that balance environmental and human well-being. This dissertation focused on three case studies operating at distinctive spatial scales in which broad socio-economic or political-institutional drivers affected land systems, with consequences for the environmental conditions of that system. Employing a land system architecture (LSA) framework and using landscape metrics to quantify landscape composition and configuration from satellite imagery, each case linked these drivers to changes in LSA and environmental outcomes.

The first paper of this dissertation found that divergent design intentions lead to unique trajectories for LSA, the urban heat island effect, and bird community at two urban riparian sites in the Phoenix metropolitan area. The second paper examined institutional shifts that occurred during Cuba’s “special period in time of peace” and found that the resulting land tenure changes both modified and maintained the LSA of the country, changing cropland but preserving forest land. The third paper found that globalized forces may be contributing to the homogenizing urban form of large, populous cities in China, India, and the United States—especially for the ten largest cities in each country—with implications for surface urban heat island intensity. Expanding knowledge on social drivers of land system and environmental change provides insights on designing landscapes that optimize for a range of social and ecological trade-offs.
ContributorsStuhlmacher, Michelle (Author) / Turner, II, Billie L. (Thesis advisor) / Georgescu, Matei (Thesis advisor) / Frazier, Amy E. (Committee member) / Kim, Yushim (Committee member) / Arizona State University (Publisher)
Created2020