Matching Items (5)

Filtering by

Clear all filters

133908-Thumbnail Image.png

Optimized Line Calling Strategies in Ultimate Frisbee

Description

Ultimate Frisbee or "Ultimate," is a fast growing field sport that is being played competitively at universities across the country. Many mid-tier college teams have the goal of winning as many games as possible, however they also need to grow

Ultimate Frisbee or "Ultimate," is a fast growing field sport that is being played competitively at universities across the country. Many mid-tier college teams have the goal of winning as many games as possible, however they also need to grow their program by training and retaining new players. The purpose of this project was to create a prototype statistical tool that maximizes a player line-up's probability of scoring the next point, while having as equal playing time across all experienced and novice players as possible. Game, player, and team data was collected for 25 different games played over the course of 4 tournaments during Fall 2017 and early Spring 2018 using the UltiAnalytics iPad application. "Amount of Top 1/3 Players" was the measure of equal playing time, and "Line Efficiency" and "Line Interaction" represented a line's probability of scoring. After running a logistic regression, Line Efficiency was found to be the more accurate predictor of scoring outcome than Line Interaction. An "Equal PT Measure vs. Line Efficiency" graph was then created and the plot showed what the optimal lines were depending on what the user's preferences were at that point in time. Possible next steps include testing the model and refining it as needed.

Contributors

Created

Date Created
2018-05

Optimization of Incoming Inspection

Description

The first step in process improvement is to scope the problem, next is measure the current process, but if data is not readily available and cannot be manually collected, then a measurement system must be implemented. General Dynamics Mission Systems

The first step in process improvement is to scope the problem, next is measure the current process, but if data is not readily available and cannot be manually collected, then a measurement system must be implemented. General Dynamics Mission Systems (GDMS) is a lean company that is always seeking to improve. One of their current bottlenecks is the incoming inspection department. This department is responsible for finding defects on parts purchased and is critical to the high reliability product produced by GDMS. To stay competitive and hold their market share, a decision was made to optimize incoming inspection. This proved difficult because no data is being collected. Early steps in many process improvement methodologies, such as Define, Measure, Analyze, Improve and Control (DMAIC), include data collection; however, no measurement system was in place, resulting in no available data for improvement. The solution to this problem was to design and implement a Management Information System (MIS) that will track a variety of data. This will provide the company with data that will be used for analysis and improvement. The first stage of the MIS was developed in Microsoft Excel with Visual Basic for Applications because of the low cost and overall effectiveness of the software. Excel allows update to be made quickly, and allows GDMS to collect data immediately. Stage two would be moving the MIS to a more practicable software, such as Access or MySQL. This thesis is only focuses on stage one of the MIS, and GDMS will proceed with stage two.

Contributors

Agent

Created

Date Created
2017-05

134600-Thumbnail Image.png

A Simulation Model of the Effect of Workplace Structure on Productivity

Description

Workplace productivity is a result of many factors, and among them is the setup of the office and its resultant noise level. The conversations and interruptions that come along with converting an office to an open plan can foster innovation

Workplace productivity is a result of many factors, and among them is the setup of the office and its resultant noise level. The conversations and interruptions that come along with converting an office to an open plan can foster innovation and creativity, or they can be distracting and harm the performance of employees. Through simulation, the impact of different types of office noise was studied along with other changing conditions such as number of people in the office. When productivity per person, defined in terms of mood and focus, was measured, it was found that the effect of noise was positive in some scenarios and negative in others. In simulations where employees were performing very similar tasks, noise (and its correlates, such as number of employees), was beneficial. On the other hand, when employees were engaged in a variety of different types of tasks, noise had a negative overall effect. This indicates that workplaces that group their employees by common job functions may be more productive than workplaces where the problems and products that employees are working on are varied throughout the workspace.

Contributors

Agent

Created

Date Created
2017-05

134662-Thumbnail Image.png

Data and Predictive Analytics for Energy Use

Description

The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of

The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of energy production cannot be accurately and efficiently forecasted. Inaccurate engineering assumptions can result when there is a lack of understanding on how energy systems can operate in real-world applications. Energy systems are complex, which results in unknown system behaviors, due to an unknown structural system model. Currently, there exists a lack of data mining techniques in reverse engineering, which are needed to develop efficient structural system models. In this project, a new type of reverse engineering algorithm has been applied to a year's worth of energy data collected from an ASU research building called MacroTechnology Works, to identify the structural system model. Developing and understanding structural system models is the first step in creating accurate predictive analytics for energy production. The associative network of the building's data will be highlighted to accurately depict the structural model. This structural model will enhance energy infrastructure systems' energy efficiency, reduce energy waste, and narrow the gaps between energy infrastructure design, planning, operation and management (DPOM).

Contributors

Agent

Created

Date Created
2016-12

153263-Thumbnail Image.png

The application of Bayesian networks in system reliability

Description

In this paper, a literature review is presented on the application of Bayesian networks applied in system reliability analysis. It is shown that Bayesian networks have become a popular modeling framework for system reliability analysis due to the benefits that

In this paper, a literature review is presented on the application of Bayesian networks applied in system reliability analysis. It is shown that Bayesian networks have become a popular modeling framework for system reliability analysis due to the benefits that Bayesian networks have the capability and flexibility to model complex systems, update the probability according to evidences and give a straightforward and compact graphical representation. Research on approaches for Bayesian network learning and inference are summarized. Two groups of models with multistate nodes were developed for scenarios from constant to continuous time to apply and contrast Bayesian networks with classical fault tree method. The expanded model discretized the continuous variables and provided failure related probability distribution over time.

Contributors

Agent

Created

Date Created
2014