Matching Items (11)
Filtering by

Clear all filters

152768-Thumbnail Image.png
Description
In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact patient safety and hospital revenue. Any time instrumentation or devices are not available or are not fit for use, patient safety and revenue can be negatively impacted. One step of the instrument reprocessing cycle is sterilization. Steam sterilization is the sterilization method used for the majority of surgical instruments and is preferred to immediate use steam sterilization (IUSS) because terminally sterilized items can be stored until needed. IUSS Items must be used promptly and cannot be stored for later use. IUSS is intended for emergency situations and not as regular course of action. Unfortunately, IUSS is used to compensate for inadequate inventory levels, scheduling conflicts, and miscommunications. If IUSS is viewed as an adverse event, then monitoring IUSS incidences can help healthcare organizations meet patient safety goals and financial goals along with aiding in process improvement efforts. This work recommends statistical process control methods to IUSS incidents and illustrates the use of control charts for IUSS occurrences through a case study and analysis of the control charts for data from a health care provider. Furthermore, this work considers the application of data mining methods to IUSS occurrences and presents a representative example of data mining to the IUSS occurrences. This extends the application of statistical process control and data mining in healthcare applications.
ContributorsWeart, Gail (Author) / Runger, George C. (Thesis advisor) / Li, Jing (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2014
150466-Thumbnail Image.png
Description
The ever-changing economic landscape has forced many companies to re-examine their supply chains. Global resourcing and outsourcing of processes has been a strategy many organizations have adopted to reduce cost and to increase their global footprint. This has, however, resulted in increased process complexity and reduced customer satisfaction. In order

The ever-changing economic landscape has forced many companies to re-examine their supply chains. Global resourcing and outsourcing of processes has been a strategy many organizations have adopted to reduce cost and to increase their global footprint. This has, however, resulted in increased process complexity and reduced customer satisfaction. In order to meet and exceed customer expectations, many companies are forced to improve quality and on-time delivery, and have looked towards Lean Six Sigma as an approach to enable process improvement. The Lean Six Sigma literature is rich in deployment strategies; however, there is a general lack of a mathematical approach to deploy Lean Six Sigma in a global enterprise. This includes both project identification and prioritization. The research presented here is two-fold. Firstly, a process characterization framework is presented to evaluate processes based on eight characteristics. An unsupervised learning technique, using clustering algorithms, is then utilized to group processes that are Lean Six Sigma conducive. The approach helps Lean Six Sigma deployment champions to identify key areas within the business to focus a Lean Six Sigma deployment. A case study is presented and 33% of the processes were found to be Lean Six Sigma conducive. Secondly, having identified parts of the business that are lean Six Sigma conducive, the next steps are to formulate and prioritize a portfolio of projects. Very often the deployment champion is faced with the decision of selecting a portfolio of Lean Six Sigma projects that meet multiple objectives which could include: maximizing productivity, customer satisfaction or return on investment, while meeting certain budgetary constraints. A multi-period 0-1 knapsack problem is presented that maximizes the expected net savings of the Lean Six Sigma portfolio over the life cycle of the deployment. Finally, a case study is presented that demonstrates the application of the model in a large multinational company. Traditionally, Lean Six Sigma found its roots in manufacturing. The research presented in this dissertation also emphasizes the applicability of the methodology to the non-manufacturing space. Additionally, a comparison is conducted between manufacturing and non-manufacturing processes to highlight the challenges in deploying the methodology in both spaces.
ContributorsDuarte, Brett Marc (Author) / Fowler, John W (Thesis advisor) / Montgomery, Douglas C. (Thesis advisor) / Shunk, Dan (Committee member) / Borror, Connie (Committee member) / Konopka, John (Committee member) / Arizona State University (Publisher)
Created2011
151008-Thumbnail Image.png
Description
Buildings (approximately half commercial and half residential) consume over 70% of the electricity among all the consumption units in the United States. Buildings are also responsible for approximately 40% of CO2 emissions, which is more than any other industry sectors. As a result, the initiative smart building which aims to

Buildings (approximately half commercial and half residential) consume over 70% of the electricity among all the consumption units in the United States. Buildings are also responsible for approximately 40% of CO2 emissions, which is more than any other industry sectors. As a result, the initiative smart building which aims to not only manage electrical consumption in an efficient way but also reduce the damaging effect of greenhouse gases on the environment has been launched. Another important technology being promoted by government agencies is the smart grid which manages energy usage across a wide range of buildings in an effort to reduce cost and increase reliability and transparency. As a great amount of efforts have been devoted to these two initiatives by either exploring the smart grid designs or developing technologies for smart buildings, the research studying how the smart buildings and smart grid coordinate thus more efficiently use the energy is currently lacking. In this dissertation, a "system-of-system" approach is employed to develop an integrated building model which consists a number of buildings (building cluster) interacting with smart grid. The buildings can function as both energy consumption unit as well as energy generation/storage unit. Memetic Algorithm (MA) and Particle Swarm Optimization (PSO) based decision framework are developed for building operation decisions. In addition, Particle Filter (PF) is explored as a mean for fusing online sensor and meter data so adaptive decision could be made in responding to dynamic environment. The dissertation is divided into three inter-connected research components. First, an integrated building energy model including building consumption, storage, generation sub-systems for the building cluster is developed. Then a bi-level Memetic Algorithm (MA) based decentralized decision framework is developed to identify the Pareto optimal operation strategies for the building cluster. The Pareto solutions not only enable multiple dimensional tradeoff analysis, but also provide valuable insight for determining pricing mechanisms and power grid capacity. Secondly, a multi-objective PSO based decision framework is developed to reduce the computational effort of the MA based decision framework without scarifying accuracy. With the improved performance, the decision time scale could be refined to make it capable for hourly operation decisions. Finally, by integrating the multi-objective PSO based decision framework with PF, an adaptive framework is developed for adaptive operation decisions for smart building cluster. The adaptive framework not only enables me to develop a high fidelity decision model but also enables the building cluster to respond to the dynamics and uncertainties inherent in the system.
ContributorsHu, Mengqi (Author) / Wu, Teresa (Thesis advisor) / Weir, Jeffery (Thesis advisor) / Wen, Jin (Committee member) / Fowler, John (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2012
151203-Thumbnail Image.png
Description
This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers

This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers (between 11% and 22%) of an aging population. There is only one approved therapy with limited efficacy, which results in a huge unmet need. The reason so few drugs have reached approval is a lack of a recognized therapeutic pathway with reproducible endpoints. While the interplay between blink function and ocular surface protection has long been recognized, all currently used evaluation techniques have addressed blink function in isolation from tear film stability, the gold standard of which is Tear Film Break-Up Time (TFBUT). In the first part of this research a manual technique of calculating ocular surface protection during natural blink function through the use of video analysis is developed and evaluated for it's ability to differentiate between dry eye and normal subjects, the results are compared with that of TFBUT. In the second part of this research the technique is improved in precision and automated through the use of video analysis algorithms. This software, called the OPI 2.0 System, is evaluated for accuracy and precision, and comparisons are made between the OPI 2.0 System and other currently recognized dry eye diagnostic techniques (e.g. TFBUT). In the third part of this research the OPI 2.0 System is deployed for use in the evaluation of subjects before, immediately after and 30 minutes after exposure to a controlled adverse environment (CAE), once again the results are compared and contrasted against commonly used dry eye endpoints. The results demonstrate that the evaluation of ocular surface protection using the OPI 2.0 System offers superior accuracy to the current standard, TFBUT.
ContributorsAbelson, Richard (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Committee member) / Shunk, Dan (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012
137487-Thumbnail Image.png
Description
The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation

The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation study. This research seeks to determine the acquisition processes that contribute significantly to total simulated program time in the acquisition system for all programs reaching Milestone C. Specifically, this research examines the effect of increased scope management, technology maturity, and decreased variation and mean process times in post-Design Readiness Review contractor activities by performing additional simulation analyses. Potential policies are formulated from the results to further improve program acquisition completion time.
ContributorsWorger, Danielle Marie (Author) / Wu, Teresa (Thesis director) / Shunk, Dan (Committee member) / Wirthlin, J. Robert (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
168304-Thumbnail Image.png
Description
Monitoring a system for deviations from standard or reference behavior is essential for many data-driven tasks. Whether it is monitoring sensor data or the interactions between system elements, such as edges in a path or transactions in a network, the goal is to detect significant changes from a reference. As

Monitoring a system for deviations from standard or reference behavior is essential for many data-driven tasks. Whether it is monitoring sensor data or the interactions between system elements, such as edges in a path or transactions in a network, the goal is to detect significant changes from a reference. As technological advancements allow for more data to be collected from systems, monitoring approaches should evolve to accommodate the greater collection of high-dimensional data and complex system settings. This dissertation introduces system-level models for monitoring tasks characterized by changes in a subset of system components, utilizing component-level information and relationships. A change may only affect a portion of the data or system (partial change). The first three parts of this dissertation present applications and methods for detecting partial changes. The first part introduces a methodology for partial change detection in a simple, univariate setting. Changes are detected with posterior probabilities and statistical mixture models which allow only a fraction of data to change. The second and third parts of this dissertation center around monitoring more complex multivariate systems modeled through networks. The goal is to detect partial changes in the underlying network attributes and topology. The contributions of the second and third parts are two non-parametric system-level monitoring techniques that consider relationships between network elements. The algorithm Supervised Network Monitoring (SNetM) leverages Graph Neural Networks and transforms the problem into supervised learning. The other algorithm Supervised Network Monitoring for Partial Temporal Inhomogeneity (SNetMP) generates a network embedding, and then transforms the problem to supervised learning. At the end, both SNetM and SNetMP construct measures and transform them to pseudo-probabilities to be monitored for changes. The last topic addresses predicting and monitoring system-level delays on paths in a transportation/delivery system. For each item, the risk of delay is quantified. Machine learning is used to build a system-level model for delay risk, given the information available (such as environmental conditions) on the edges of a path, which integrates edge models. The outputs can then be used in a system-wide monitoring framework, and items most at risk are identified for potential corrective actions.
ContributorsKasaei Roodsari, Maziar (Author) / Runger, George (Thesis advisor) / Escobedo, Adolfo (Committee member) / Pan, Rong (Committee member) / Shinde, Amit (Committee member) / Arizona State University (Publisher)
Created2021
171393-Thumbnail Image.png
Description
The rank aggregation problem has ubiquitous applications in operations research, artificial intelligence, computational social choice, and various other fields. Generally, rank aggregation is utilized whenever a set of judges (human or non-human) express their preferences over a set of items, and it is necessary to find a consensus ranking that

The rank aggregation problem has ubiquitous applications in operations research, artificial intelligence, computational social choice, and various other fields. Generally, rank aggregation is utilized whenever a set of judges (human or non-human) express their preferences over a set of items, and it is necessary to find a consensus ranking that best represents these preferences collectively. Many real-world instances of this problem involve a very large number of items, include ties, and/or contain partial information, which brings a challenge to decision-makers. This work makes several contributions to overcoming these challenges. Most attention on this problem has focused on an NP-hard distance-based variant known as Kemeny aggregation, for which solution approaches with provable guarantees that can handle difficult large-scale instances remain elusive. Firstly, this work introduces exact and approximate methodologies inspired by the social choice foundations of the problem, namely the Condorcet criterion, to decompose the problem. To deal with instances where exact partitioning does not yield many subsets, it proposes Approximate Condorcet Partitioning, which is a scalable solution technique capable of handling large-scale instances while providing provable guarantees. Secondly, this work delves into the rank aggregation problem under the generalized Kendall-tau distance, which contains Kemeny aggregation as a special case. This new problem provides a robust and highly-flexible framework for handling ties. First, it derives exact and heuristic solution methods for the generalized problem. Second, it introduces a novel social choice property that encloses existing variations of the Condorcet criterion as special cases. Thirdly, this work focuses on top-k list aggregation. Top-k lists are a special form of item orderings wherein out of n total items only a small number of them, k, are explicitly ordered. Top-k lists are being increasingly utilized in various fields including recommendation systems, information retrieval, and machine learning. This work introduces exact and inexact methods for consolidating a collection of heterogeneous top- lists. Furthermore, the strength of the proposed exact formulations is analyzed from a polyhedral point of view. Finally, this work identifies the top-100 U.S. universities by consolidating four prominent university rankings to assess the computational implications of this problem.
ContributorsAkbari, Sina (Author) / Escobedo, Adolfo (Thesis advisor) / Byeon, Geunyeong (Committee member) / Sefair, Jorge (Committee member) / Wu, Shin-Yi (Committee member) / Arizona State University (Publisher)
Created2022
158694-Thumbnail Image.png
Description
In conventional supervised learning tasks, information retrieval from extensive collections of data happens automatically at low cost, whereas in many real-world problems obtaining labeled data can be hard, time-consuming, and expensive. Consider healthcare systems, for example, where unlabeled medical images are abundant while labeling requires a considerable amount of knowledge

In conventional supervised learning tasks, information retrieval from extensive collections of data happens automatically at low cost, whereas in many real-world problems obtaining labeled data can be hard, time-consuming, and expensive. Consider healthcare systems, for example, where unlabeled medical images are abundant while labeling requires a considerable amount of knowledge from experienced physicians. Active learning addresses this challenge with an iterative process to select instances from the unlabeled data to annotate and improve the supervised learner. At each step, the query of examples to be labeled can be considered as a dilemma between exploitation of the supervised learner's current knowledge and exploration of the unlabeled input features.

Motivated by the need for efficient active learning strategies, this dissertation proposes new algorithms for batch-mode, pool-based active learning. The research considers the following questions: how can unsupervised knowledge of the input features (exploration) improve learning when incorporated with supervised learning (exploitation)? How to characterize exploration in active learning when data is high-dimensional? Finally, how to adaptively make a balance between exploration and exploitation?

The first contribution proposes a new active learning algorithm, Cluster-based Stochastic Query-by-Forest (CSQBF), which provides a batch-mode strategy that accelerates learning with added value from exploration and improved exploitation scores. CSQBF balances exploration and exploitation using a probabilistic scoring criterion based on classification probabilities from a tree-based ensemble model within each data cluster.

The second contribution introduces two more query strategies, Double Margin Active Learning (DMAL) and Cluster Agnostic Active Learning (CAAL), that combine consistent exploration and exploitation modules into a coherent and unified measure for label query. Instead of assuming a fixed clustering structure, CAAL and DMAL adopt a soft-clustering strategy which provides a new approach to formalize exploration in active learning.

The third contribution addresses the challenge of dynamically making a balance between exploration and exploitation criteria throughout the active learning process. Two adaptive algorithms are proposed based on feedback-driven bandit optimization frameworks that elegantly handle this issue by learning the relationship between exploration-exploitation trade-off and an active learner's performance.
ContributorsShams, Ghazal (Author) / Runger, George C. (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Escobedo, Adolfo (Committee member) / Pedrielli, Giulia (Committee member) / Arizona State University (Publisher)
Created2020
158577-Thumbnail Image.png
Description
This dissertation focuses on three large-scale optimization problems and devising algorithms to solve them. In addition to the societal impact of each problem’s solution, this dissertation contributes to the optimization literature a set of decomposition algorithms for problems whose optimal solution is sparse. These algorithms exploit problem-specific properties and use

This dissertation focuses on three large-scale optimization problems and devising algorithms to solve them. In addition to the societal impact of each problem’s solution, this dissertation contributes to the optimization literature a set of decomposition algorithms for problems whose optimal solution is sparse. These algorithms exploit problem-specific properties and use tailored strategies based on iterative refinement (outer-approximations). The proposed algorithms are not rooted in duality theory, providing an alternative to existing methods based on linear programming relaxations. However, it is possible to embed existing decomposition methods into the proposed framework. These general decomposition principles extend to other combinatorial optimization problems.

The first problem is a route assignment and scheduling problem in which a set of vehicles need to traverse a directed network while maintaining a minimum inter-vehicle distance at any time. This problem is inspired by applications in hazmat logistics and the coordination of autonomous agents. The proposed approach includes realistic features such as continuous-time vehicle scheduling, heterogeneous speeds, minimum and maximum waiting times at any node, among others.

The second problem is a fixed-charge network design, which aims to find a minimum-cost plan to transport a target amount of a commodity between known origins and destinations. In addition to the typical flow decisions, the model chooses the capacity of each arc and selects sources and sinks. The proposed algorithms admit any nondecreasing piecewise linear cost structure. This model is applied to the Carbon Capture and Storage (CCS) problem, which is to design a minimum-cost pipeline network to transport CO2 between industrial sources and geologic reservoirs for long-term storage.

The third problem extends the proposed decomposition framework to a special case of joint chance constraint programming with independent random variables. This model is applied to the probabilistic transportation problem, where demands are assumed stochastic and independent. Using an empirical probability distribution, this problem is formulated as an integer program with the goal of finding a minimum-cost distribution plan that satisfies all the demands with a minimum given probability. The proposed scalable algorithm is based on a concave envelop approximation of the empirical probability function, which is iteratively refined as needed.
ContributorsMatin Moghaddam, Navid (Author) / Sefair, Jorge (Thesis advisor) / Mirchandani, Pitu (Committee member) / Escobedo, Adolfo (Committee member) / Grubesic, Anthony (Committee member) / Arizona State University (Publisher)
Created2020
161559-Thumbnail Image.png
Description
To maintain long term success, a manufacturing company should be managed and operated under the guidance of properly designed capacity, production and logistics plans that are formulated in coordination with its manufacturing footprint, so that its managerial goals on both strategic and tactical levels can be fulfilled. In particular, sufficient

To maintain long term success, a manufacturing company should be managed and operated under the guidance of properly designed capacity, production and logistics plans that are formulated in coordination with its manufacturing footprint, so that its managerial goals on both strategic and tactical levels can be fulfilled. In particular, sufficient flexibility and efficiency should be ensured so that future customer demand can be met at a profit. This dissertation is motivated by an automobile manufacturer's mid-term and long-term decision problems, but applies to any multi-plant, multi-product manufacturer with evolving product portfolios and significant fixed and variable production costs. Via introducing the concepts of effective capacity and product-specific flexibility, two mixed integer programming (MIP) models are proposed to help manufacturers shape their mid-term capacity plans and long-term product allocation plans. With fixed tooling flexibility, production and logistics considerations are integrated into a mid-term capacity planning model to develop well-informed and balanced tactical plans, which utilize various capacity adjustment options to coordinate production, inventory, and shipping schedules throughout the planning horizon so that overall operational and capacity adjustment costs are minimized. For long-term product allocation planning, strategic tooling configuration plans that empower the production of multi-generation products at minimal configuration and operational costs are established for all plants throughout the planning horizon considering product-specific commonality and compatibility. New product introductions and demand uncertainty over the planning horizon are incorporated. As a result, potential production sites for each product and corresponding process flexibility are determined. An efficient heuristic method is developed and shown to perform well in solution quality and computational requirements.
ContributorsYao, Xufeng (Author) / Askin, Ronald (Thesis advisor) / Sefair, Jorge (Thesis advisor) / Escobedo, Adolfo (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2021