Matching Items (26)
Filtering by

Clear all filters

151341-Thumbnail Image.png
Description
With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors that provide real time information of the traffic in the city, a change in these trajectories with time can reveal that the road network has changed. To detect changes, trajectories are modeled with a Hidden Markov Model (HMM). A modified training algorithm, for parameter estimation in HMM, called m-BaumWelch, is used to develop likelihood estimates under assumed changes and used to detect changes in trajectory data with time. Data from vehicles are used to test the method for change detection. Secondly, sequential pattern mining is used to develop a model to detect changes in frequent patterns occurring in trajectory data. The aim is to answer two questions: Are the frequent patterns still frequent in the new data? If they are frequent, has the time interval distribution in the pattern changed? Two different approaches are considered for change detection, frequency-based approach and distribution-based approach. The methods are illustrated with vehicle trajectory data. Finally, a model is developed for clustering and outlier detection in semantic trajectories. A challenge with clustering semantic trajectories is that both numeric and categorical attributes are present. Another problem to be addressed while clustering is that trajectories can be of different lengths and also have missing values. A tree-based ensemble is used to address these problems. The approach is extended to outlier detection in semantic trajectories.
ContributorsKondaveeti, Anirudh (Author) / Runger, George C. (Thesis advisor) / Mirchandani, Pitu (Committee member) / Pan, Rong (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2012
152494-Thumbnail Image.png
Description
Major advancements in biology and medicine have been realized during recent decades, including massively parallel sequencing, which allows researchers to collect millions or billions of short reads from a DNA or RNA sample. This capability opens the door to a renaissance in personalized medicine if effectively deployed. Three projects that

Major advancements in biology and medicine have been realized during recent decades, including massively parallel sequencing, which allows researchers to collect millions or billions of short reads from a DNA or RNA sample. This capability opens the door to a renaissance in personalized medicine if effectively deployed. Three projects that address major and necessary advancements in massively parallel sequencing are included in this dissertation. The first study involves a pair of algorithms to verify patient identity based on single nucleotide polymorphisms (SNPs). In brief, we developed a method that allows de novo construction of sample relationships, e.g., which ones are from the same individuals and which are from different individuals. We also developed a method to confirm the hypothesis that a tumor came from a known individual. The second study derives an algorithm to multiplex multiple Polymerase Chain Reaction (PCR) reactions, while minimizing interference between reactions that compromise results. PCR is a powerful technique that amplifies pre-determined regions of DNA and is often used to selectively amplify DNA and RNA targets that are destined for sequencing. It is highly desirable to multiplex reactions to save on reagent and assay setup costs as well as equalize the effect of minor handling issues across gene targets. Our solution involves a binary integer program that minimizes events that are likely to cause interference between PCR reactions. The third study involves design and analysis methods required to analyze gene expression and copy number results against a reference range in a clinical setting for guiding patient treatments. Our goal is to determine which events are present in a given tumor specimen. These events may be mutation, DNA copy number or RNA expression. All three techniques are being used in major research and diagnostic projects for their intended purpose at the time of writing this manuscript. The SNP matching solution has been selected by The Cancer Genome Atlas to determine sample identity. Paradigm Diagnostics, Viomics and International Genomics Consortium utilize the PCR multiplexing technique to multiplex various types of PCR reactions on multi-million dollar projects. The reference range-based normalization method is used by Paradigm Diagnostics to analyze results from every patient.
ContributorsMorris, Scott (Author) / Gel, Esma S (Thesis advisor) / Runger, George C. (Thesis advisor) / Askin, Ronald (Committee member) / Paulauskis, Joseph (Committee member) / Arizona State University (Publisher)
Created2014
152768-Thumbnail Image.png
Description
In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact patient safety and hospital revenue. Any time instrumentation or devices are not available or are not fit for use, patient safety and revenue can be negatively impacted. One step of the instrument reprocessing cycle is sterilization. Steam sterilization is the sterilization method used for the majority of surgical instruments and is preferred to immediate use steam sterilization (IUSS) because terminally sterilized items can be stored until needed. IUSS Items must be used promptly and cannot be stored for later use. IUSS is intended for emergency situations and not as regular course of action. Unfortunately, IUSS is used to compensate for inadequate inventory levels, scheduling conflicts, and miscommunications. If IUSS is viewed as an adverse event, then monitoring IUSS incidences can help healthcare organizations meet patient safety goals and financial goals along with aiding in process improvement efforts. This work recommends statistical process control methods to IUSS incidents and illustrates the use of control charts for IUSS occurrences through a case study and analysis of the control charts for data from a health care provider. Furthermore, this work considers the application of data mining methods to IUSS occurrences and presents a representative example of data mining to the IUSS occurrences. This extends the application of statistical process control and data mining in healthcare applications.
ContributorsWeart, Gail (Author) / Runger, George C. (Thesis advisor) / Li, Jing (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2014
152902-Thumbnail Image.png
Description
Accelerated life testing (ALT) is the process of subjecting a product to stress conditions (temperatures, voltage, pressure etc.) in excess of its normal operating levels to accelerate failures. Product failure typically results from multiple stresses acting on it simultaneously. Multi-stress factor ALTs are challenging as they increase the number of

Accelerated life testing (ALT) is the process of subjecting a product to stress conditions (temperatures, voltage, pressure etc.) in excess of its normal operating levels to accelerate failures. Product failure typically results from multiple stresses acting on it simultaneously. Multi-stress factor ALTs are challenging as they increase the number of experiments due to the stress factor-level combinations resulting from the increased number of factors. Chapter 2 provides an approach for designing ALT plans with multiple stresses utilizing Latin hypercube designs that reduces the simulation cost without loss of statistical efficiency. A comparison to full grid and large-sample approximation methods illustrates the approach computational cost gain and flexibility in determining optimal stress settings with less assumptions and more intuitive unit allocations.

Implicit in the design criteria of current ALT designs is the assumption that the form of the acceleration model is correct. This is unrealistic assumption in many real-world problems. Chapter 3 provides an approach for ALT optimum design for model discrimination. We utilize the Hellinger distance measure between predictive distributions. The optimal ALT plan at three stress levels was determined and its performance was compared to good compromise plan, best traditional plan and well-known 4:2:1 compromise test plans. In the case of linear versus quadratic ALT models, the proposed method increased the test plan's ability to distinguish among competing models and provided better guidance as to which model is appropriate for the experiment.

Chapter 4 extends the approach of Chapter 3 to ALT sequential model discrimination. An initial experiment is conducted to provide maximum possible information with respect to model discrimination. The follow-on experiment is planned by leveraging the most current information to allow for Bayesian model comparison through posterior model probability ratios. Results showed that performance of plan is adversely impacted by the amount of censoring in the data, in the case of linear vs. quadratic model form at three levels of constant stress, sequential testing can improve model recovery rate by approximately 8% when data is complete, but no apparent advantage in adopting sequential testing was found in the case of right-censored data when censoring is in excess of a certain amount.
ContributorsNasir, Ehab (Author) / Pan, Rong (Thesis advisor) / Runger, George C. (Committee member) / Gel, Esma (Committee member) / Kao, Ming-Hung (Committee member) / Montgomery, Douglas C. (Committee member) / Arizona State University (Publisher)
Created2014
153346-Thumbnail Image.png
Description
This thesis presents research on innovative AC transmission design concepts and focused mathematics for electric power transmission design. The focus relates to compact designs, high temperature low sag conductors, and high phase order design. The motivation of the research is to increase transmission capacity with limited right of way.

Regarding compact

This thesis presents research on innovative AC transmission design concepts and focused mathematics for electric power transmission design. The focus relates to compact designs, high temperature low sag conductors, and high phase order design. The motivation of the research is to increase transmission capacity with limited right of way.

Regarding compact phase spacing, insight into the possibility of increasing the security rating of transmission lines is the primary focus through increased mutual coupling and decreased positive sequence reactance. Compact design can reduce the required corridor width to as little as 31% of traditional designs, especially with the use of inter-phase spacers. Typically transmission lines are built with conservative clearances, with difficulty obtaining right of way, more compact phase spacing may be needed. With design consideration significant compaction can produce an increase by 5-25% in the transmission line security (steady state stability) rating. In addition, other advantages and disadvantages of compact phase design are analyzed. Also, the next two topics: high temperature low sag conductors and high phase order designs include the use of compact designs.

High temperature low sag (HTLS) conductors are used to increase the thermal capacity of a transmission line up to two times the capacity compared to traditional conductors. HTLS conductors can operate continuously at 150-210oC and in emergency at 180-250oC (depending on the HTLS conductor). ACSR conductors operate continuously at 50-110oC and in emergency conditions at 110-150oC depending on the utility, line, and location. HTLS conductors have decreased sag characteristics of up to 33% compared to traditional ACSR conductors at 100oC and up to 22% at 180oC. In addition to what HTLS has to offer in terms of the thermal rating improvement, the possibility of using HTLS conductors to indirectly reduce tower height and compact the phases to increase the security limit is investigated. In addition, utilizing HTLS conductors to increase span length and decrease the number of transmission towers is investigated. The phase compaction or increased span length is accomplished by utilization of the improved physical sag characteristics of HTLS conductors.

High phase order (HPO) focuses on the ability to increase the power capacity for a given right of way. For example, a six phase line would have a thermal rating of approximately 173%, a security rating of approximately 289%, and the SIL would be approximately 300% of a double circuit three phase line with equal right of way and equal voltage line to line. In addition, this research focuses on algorithm and model development of HPO systems. A study of the impedance of HPO lines is presented. The line impedance matrices for some high phase order configurations are circulant Toeplitz matrices. Properties of circulant matrices are developed for the generalized sequence impedances of HPO lines. A method to calculate the sequence impedances utilizing unique distance parameter algorithms is presented. A novel method to design the sequence impedances to specifications is presented. Utilizing impedance matrices in circulant form, a generalized form of the sequence components transformation matrix is presented. A generalized voltage unbalance factor in discussed for HPO transmission lines. Algorithms to calculate the number of fault types and number of significant fault types for an n-phase system are presented. A discussion is presented on transposition of HPO transmission lines and a generalized fault analysis of a high phase order circuit is presented along with an HPO analysis program.

The work presented has the objective of increasing the use of rights of way for bulk power transmission through the use of innovative transmission technologies. The purpose of this dissertation is to lay down some of the building blocks and to help make the three technologies discussed practical applications in the future.
ContributorsPierre, Brian J (Author) / Heydt, Gerald (Thesis advisor) / Karady, George G. (Committee member) / Shunk, Dan (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2015
150172-Thumbnail Image.png
Description
This thesis develops a low-investment marketing strategy that allows low-to-mid level farmers extend their commercialization reach by strategically sending containers of fresh produce items to secondary markets that present temporary arbitrage opportunities. The methodology aims at identifying time windows of opportunity in which the price differential between two markets create

This thesis develops a low-investment marketing strategy that allows low-to-mid level farmers extend their commercialization reach by strategically sending containers of fresh produce items to secondary markets that present temporary arbitrage opportunities. The methodology aims at identifying time windows of opportunity in which the price differential between two markets create an arbitrage opportunity for a transaction; a transaction involves buying a fresh produce item at a base market, and then shipping and selling it at secondary market price. A decision-making tool is developed that gauges the individual arbitrage opportunities and determines the specific price differential (or threshold level) that is most beneficial to the farmer under particular market conditions. For this purpose, two approaches are developed; a pragmatic approach that uses historic price information of the products in order to find the optimal price differential that maximizes earnings, and a theoretical one, which optimizes an expected profit model of the shipments to identify this optimal threshold. This thesis also develops risk management strategies that further reduce profit variability during a particular two-market transaction. In this case, financial engineering concepts are used to determine a shipment configuration strategy that minimizes the overall variability of the profits. For this, a Markowitz model is developed to determine the weight assignation of each component for a particular shipment. Based on the results of the analysis, it is deemed possible to formulate a shipment policy that not only increases the farmer's commercialization reach, but also produces profitable operations. In general, the observed rates of return under a pragmatic and theoretical approach hovered between 0.072 and 0.616 within important two-market structures. Secondly, it is demonstrated that the level of return and risk can be manipulated by varying the strictness of the shipping policy to meet the overall objectives of the decision-maker. Finally, it was found that one can minimize the risk of a particular two-market transaction by strategically grouping the product shipments.
ContributorsFlores, Hector M (Author) / Villalobos, Rene (Thesis advisor) / Runger, George C. (Committee member) / Maltz, Arnold (Committee member) / Arizona State University (Publisher)
Created2011
149928-Thumbnail Image.png
Description
The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards

The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards these objectives, this research focuses on data integration within two scenarios: (1) transcriptomic, proteomic and functional information and (2) real-time sensor-based measurements motivated by single-cell technology. To assess relationships between protein abundance, transcriptomic and functional data, a nonlinear model was explored at static and temporal levels. The successful integration of these heterogeneous data sources through the stochastic gradient boosted tree approach and its improved predictability are some highlights of this work. Through the development of an innovative validation subroutine based on a permutation approach and the use of external information (i.e., operons), lack of a priori knowledge for undetected proteins was overcome. The integrative methodologies allowed for the identification of undetected proteins for Desulfovibrio vulgaris and Shewanella oneidensis for further biological exploration in laboratories towards finding functional relationships. In an effort to better understand diseases such as cancer at different developmental stages, the Microscale Life Science Center headquartered at the Arizona State University is pursuing single-cell studies by developing novel technologies. This research arranged and applied a statistical framework that tackled the following challenges: random noise, heterogeneous dynamic systems with multiple states, and understanding cell behavior within and across different Barrett's esophageal epithelial cell lines using oxygen consumption curves. These curves were characterized with good empirical fit using nonlinear models with simple structures which allowed extraction of a large number of features. Application of a supervised classification model to these features and the integration of experimental factors allowed for identification of subtle patterns among different cell types visualized through multidimensional scaling. Motivated by the challenges of analyzing real-time measurements, we further explored a unique two-dimensional representation of multiple time series using a wavelet approach which showcased promising results towards less complex approximations. Also, the benefits of external information were explored to improve the image representation.
ContributorsTorres Garcia, Wandaliz (Author) / Meldrum, Deirdre R. (Thesis advisor) / Runger, George C. (Thesis advisor) / Gel, Esma S. (Committee member) / Li, Jing (Committee member) / Zhang, Weiwen (Committee member) / Arizona State University (Publisher)
Created2011
149723-Thumbnail Image.png
Description
This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree models. Associative classifiers can achieve

This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree models. Associative classifiers can achieve high accuracy, but the combination of many rules is difficult to interpret. Rule condition subset selection (RCSS) methods for associative classification are considered. RCSS aims to prune the rule conditions into a subset via feature selection. The subset then can be summarized into rule-based classifiers. Experiments show that classifiers after RCSS can substantially improve the classification interpretability without loss of accuracy. An ensemble feature selection method is proposed to learn Markov blankets for either discrete or continuous networks (without linear, Gaussian assumptions). The method is compared to a Bayesian local structure learning algorithm and to alternative feature selection methods in the causal structure learning problem. Feature selection is also used to enhance the interpretability of time series classification. Existing time series classification algorithms (such as nearest-neighbor with dynamic time warping measures) are accurate but difficult to interpret. This research leverages the time-ordering of the data to extract features, and generates an effective and efficient classifier referred to as a time series forest (TSF). The computational complexity of TSF is only linear in the length of time series, and interpretable features can be extracted. These features can be further reduced, and summarized for even better interpretability. Lastly, two variable importance measures are proposed to reduce the feature selection bias in tree-based ensemble models. It is well known that bias can occur when predictor attributes have different numbers of values. Two methods are proposed to solve the bias problem. One uses an out-of-bag sampling method called OOBForest, and the other, based on the new concept of a partial permutation test, is called a pForest. Experimental results show the existing methods are not always reliable for multi-valued predictors, while the proposed methods have advantages.
ContributorsDeng, Houtao (Author) / Runger, George C. (Thesis advisor) / Lohr, Sharon L (Committee member) / Pan, Rong (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2011
150555-Thumbnail Image.png
Description
Supply chains are increasingly complex as companies branch out into newer products and markets. In many cases, multiple products with moderate differences in performance and price compete for the same unit of demand. Simultaneous occurrences of multiple scenarios (competitive, disruptive, regulatory, economic, etc.), coupled with business decisions (pricing, product introduction,

Supply chains are increasingly complex as companies branch out into newer products and markets. In many cases, multiple products with moderate differences in performance and price compete for the same unit of demand. Simultaneous occurrences of multiple scenarios (competitive, disruptive, regulatory, economic, etc.), coupled with business decisions (pricing, product introduction, etc.) can drastically change demand structures within a short period of time. Furthermore, product obsolescence and cannibalization are real concerns due to short product life cycles. Analytical tools that can handle this complexity are important to quantify the impact of business scenarios/decisions on supply chain performance. Traditional analysis methods struggle in this environment of large, complex datasets with hundreds of features becoming the norm in supply chains. We present an empirical analysis framework termed Scenario Trees that provides a novel representation for impulse and delayed scenario events and a direction for modeling multivariate constrained responses. Amongst potential learners, supervised learners and feature extraction strategies based on tree-based ensembles are employed to extract the most impactful scenarios and predict their outcome on metrics at different product hierarchies. These models are able to provide accurate predictions in modeling environments characterized by incomplete datasets due to product substitution, missing values, outliers, redundant features, mixed variables and nonlinear interaction effects. Graphical model summaries are generated to aid model understanding. Models in complex environments benefit from feature selection methods that extract non-redundant feature subsets from the data. Additional model simplification can be achieved by extracting specific levels/values that contribute to variable importance. We propose and evaluate new analytical methods to address this problem of feature value selection and study their comparative performance using simulated datasets. We show that supply chain surveillance can be structured as a feature value selection problem. For situations such as new product introduction, a bottom-up approach to scenario analysis is designed using an agent-based simulation and data mining framework. This simulation engine envelopes utility theory, discrete choice models and diffusion theory and acts as a test bed for enacting different business scenarios. We demonstrate the use of machine learning algorithms to analyze scenarios and generate graphical summaries to aid decision making.
ContributorsShinde, Amit (Author) / Runger, George C. (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Villalobos, Rene (Committee member) / Janakiram, Mani (Committee member) / Arizona State University (Publisher)
Created2012
150466-Thumbnail Image.png
Description
The ever-changing economic landscape has forced many companies to re-examine their supply chains. Global resourcing and outsourcing of processes has been a strategy many organizations have adopted to reduce cost and to increase their global footprint. This has, however, resulted in increased process complexity and reduced customer satisfaction. In order

The ever-changing economic landscape has forced many companies to re-examine their supply chains. Global resourcing and outsourcing of processes has been a strategy many organizations have adopted to reduce cost and to increase their global footprint. This has, however, resulted in increased process complexity and reduced customer satisfaction. In order to meet and exceed customer expectations, many companies are forced to improve quality and on-time delivery, and have looked towards Lean Six Sigma as an approach to enable process improvement. The Lean Six Sigma literature is rich in deployment strategies; however, there is a general lack of a mathematical approach to deploy Lean Six Sigma in a global enterprise. This includes both project identification and prioritization. The research presented here is two-fold. Firstly, a process characterization framework is presented to evaluate processes based on eight characteristics. An unsupervised learning technique, using clustering algorithms, is then utilized to group processes that are Lean Six Sigma conducive. The approach helps Lean Six Sigma deployment champions to identify key areas within the business to focus a Lean Six Sigma deployment. A case study is presented and 33% of the processes were found to be Lean Six Sigma conducive. Secondly, having identified parts of the business that are lean Six Sigma conducive, the next steps are to formulate and prioritize a portfolio of projects. Very often the deployment champion is faced with the decision of selecting a portfolio of Lean Six Sigma projects that meet multiple objectives which could include: maximizing productivity, customer satisfaction or return on investment, while meeting certain budgetary constraints. A multi-period 0-1 knapsack problem is presented that maximizes the expected net savings of the Lean Six Sigma portfolio over the life cycle of the deployment. Finally, a case study is presented that demonstrates the application of the model in a large multinational company. Traditionally, Lean Six Sigma found its roots in manufacturing. The research presented in this dissertation also emphasizes the applicability of the methodology to the non-manufacturing space. Additionally, a comparison is conducted between manufacturing and non-manufacturing processes to highlight the challenges in deploying the methodology in both spaces.
ContributorsDuarte, Brett Marc (Author) / Fowler, John W (Thesis advisor) / Montgomery, Douglas C. (Thesis advisor) / Shunk, Dan (Committee member) / Borror, Connie (Committee member) / Konopka, John (Committee member) / Arizona State University (Publisher)
Created2011