Matching Items (3)
Filtering by

Clear all filters

133920-Thumbnail Image.png
Description
The combination of immunohistochemical (IHC) stainings and optical microscopy has allowed for the visualization of specific microscopic structures within tissue; however, limitations in light and antibody penetration mitigate the scale on which these images can be taken (Alshammari et al, 2016; Marx, 2014). Tissue clearing, specifically the removal of lipids

The combination of immunohistochemical (IHC) stainings and optical microscopy has allowed for the visualization of specific microscopic structures within tissue; however, limitations in light and antibody penetration mitigate the scale on which these images can be taken (Alshammari et al, 2016; Marx, 2014). Tissue clearing, specifically the removal of lipids to improve sample transparency, solves the former weakness well, but does not improve antibody penetration significantly (Chung et al, 2013; Treweek et al, 2015). Therefore, there is a need to equalize the maximum depth that light can pass through a section with the depth at which there is recognizable fluorescence. This is particularly important when staining blood vessels as traditional size limitations exclusively allows for cross sectional visualization. Passive CLARITY Technique (PACT) has been at the forefront of tissue clearing protocols, utilizing an acrylamide hydrogel solution to maintain structure and sodium dodecyl sulfate to wash out lipids (Tomer et al, 2014). PACT is limited in its ability to clear larger sections and is not conducive to IHC antibody diffusion (Treweek et al, 2015). In order to circumvent these drawbacks, CUBIC was developed as an alternative passive protocol, aimed at being scalable to any tissue size (Richardson, 2015; Susaki et al, 2015). This study compared the effectiveness of both protocols in high and low lipid tissues in the context of blood vessel staining efficacy. Upon initial comparison, it became apparent that there was a statistically significant difference in mean DAPI intensity at all depths, up to 200 micrometers, between CUBIC and PACT \u2014 the former showcasing brighter stainings. Moreover, it was found that PACT does not remove erythrocytes from the tissue meaning that their auto-fluorescence is seen during imaging. Therefore, for blood vessel stainings, only CUBIC was optimized and quantitatively analyzed. In both tissue conditions as well as for two stainings, DAPI and fibronectin (FNCT), optimized CUBIC demonstrated a statistically significant difference from standard CUBIC with regards to mean fluorescent intensity.
ContributorsSidhu, Gurpaul Singh (Author) / VanAuker, Michael (Thesis director) / Kodibagkar, Vikram (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148333-Thumbnail Image.png
Description

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.

ContributorsSecrest, Micah (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
165106-Thumbnail Image.png
Description
Glioblastoma brain tumors are among the most lethal human cancers. Treatment efforts typically involve both surgical tumor removal, as well as ongoing therapy. In this work, we propose the use of deuterium magnetic resonance imaging (MRI) to delineate tumor boundaries based on spatial distributions of deuterated leucine, as well as

Glioblastoma brain tumors are among the most lethal human cancers. Treatment efforts typically involve both surgical tumor removal, as well as ongoing therapy. In this work, we propose the use of deuterium magnetic resonance imaging (MRI) to delineate tumor boundaries based on spatial distributions of deuterated leucine, as well as resolve the metabolism of leucine within the tumor. Accurate boundary identification contributes to effectiveness of tumor removal efforts, while amino acid metabolism information may help characterize tumor malignancy and guide ongoing treatment. So, we first examine the fundamental mechanisms of deuterium MRI. We then discuss the use of spin-echo and gradient recall echo sequences for mapping spatial distributions of deuterated leucine, and the use of single-voxel spectroscopy for imaging metabolites within a tumor.
ContributorsCostelle, Anna (Author) / Beeman, Scott (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05