Matching Items (7)

Immunostaining for Bacteria on Resin-embedded Honeybee Brains

Description

The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their

The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria existing in human brains, which can be investigated in honeybee brains due to their well-documented structure. The purpose of this study is to establish if lipopolysaccharide—a molecule on bacteria membranes—is present in the honeybee brain and if it colocalizes with vitellogenin—an immune mediator. Additionally, this study also seeks to establish the efficacy of embedding tissue samples in resin and performing immunohistochemistry for vitellogenin and lipopolysaccharide on sections.

Contributors

Agent

Created

Date Created
  • 2020-05

157846-Thumbnail Image.png

Immunological and gene regulatory functions of the protein vitellogenin in honey bees (Apis mellifera)

Description

Vitellogenin (Vg) is an ancient and highly conserved multifunctional protein. It is primarily known for its role in egg-yolk formation but also serves functions pertaining to immunity, longevity, nutrient storage,

Vitellogenin (Vg) is an ancient and highly conserved multifunctional protein. It is primarily known for its role in egg-yolk formation but also serves functions pertaining to immunity, longevity, nutrient storage, and oxidative stress relief. In the honey bee (Apis mellifera), Vg has evolved still further to include important social functions that are critical to the maintenance and proliferation of colonies. Here, Vg is used to synthesize royal jelly, a glandular secretion produced by a subset of the worker caste that is fed to the queen and young larvae and which is essential for caste development and social immunity. Moreover, Vg in the worker caste sets the pace of their behavioral development as they transition between different tasks throughout their life. In this dissertation, I make several new discoveries about Vg functionality. First, I uncover a colony-level immune pathway in bees that uses royal jelly as a vehicle to transfer pathogen fragments between nestmates. Second, I show that Vg is localized and expressed in the honey bee digestive tract and suggest possible immunological functions it may be performing there. Finally, I show that Vg enters to nucleus and binds to deoxyribonucleic acid (DNA), acting as a potential transcription factor to regulate expression of many genes pertaining to behavior, metabolism, and signal transduction pathways. These findings represent a significant advance in the understanding of Vg functionality and honey bee biology, and set the stage for many future avenues of research.

Contributors

Agent

Created

Date Created
  • 2019

155638-Thumbnail Image.png

The role of the biogenic amine tyramine in latent inhibition learning in the honey bee, Apis mellifera

Description

Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw

Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw JS, Mazade R, Sinakevitch I, Mustard JA, Gadau J, Smith BH (submitted)). The locus containing the AmTYR1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. The Smith lab has been able to show a correlation between learning and the AmTYR1 receptor gene through pharmacological inhibition of the receptor. In order to further confirm this finding, experiments were designed to test how honey bees learn with this receptor knocked out. Here this G-protein coupled receptor for the biogenic amine tyramine is implemented as an important factor underlying latent inhibition in honey bees. It is shown that double-stranded RNA (dsRNA) and Dicer-substrate small interfering RNA (dsiRNA) that are targeted to disrupt the tyramine receptors specifically affects latent inhibition but not excitatory associative conditioning. The results therefore identify a distinct reinforcement pathway for latent inhibition in insects.

Contributors

Agent

Created

Date Created
  • 2017

155013-Thumbnail Image.png

Sublethal effects of heavy metal and metalloid exposure in honey bees: behavioral modifications and potential mechanisms

Description

Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral

Neurotoxicology has historically focused on substances that directly damage nervous tissue. Behavioral assays that test sensory, cognitive, or motor function are used to identify neurotoxins. But, the outcomes of behavioral assays may also be influenced by the physiological status of non-neural organs. Therefore, toxin induced damage to non- neural organs may contribute to behavioral modifications. Heavy metals and metalloids are persistent environmental pollutants and induce neurological deficits in multiple organisms. However, in the honey bee, an important insect pollinator, little is known about the sublethal effects of heavy metal and metalloid toxicity though they are exposed to these toxins chronically in some environments. In this thesis I investigate the sublethal effects of copper, cadmium, lead, and selenium on honey bee behavior and identify potential mechanisms mediating the behavioral modifications. I explore the honey bees’ ability to detect these toxins, their sensory perception of sucrose following toxin exposure, and the effects of toxin ingestion on performance during learning and memory tasks. The effects depend on the specific metal. Honey bees detect and reject copper containing solutions, but readily consume those contaminated with cadmium and lead. And, exposure to lead may alter the sensory perception of sucrose. I also demonstrate that acute selenium exposure impairs learning and long-term memory formation or recall. Localizing selenium accumulation following chronic exposure reveals that damage to non-neural organs and peripheral sensory structures is more likely than direct neurotoxicity. Probable mechanisms include gut microbiome alterations, gut lining

damage, immune system activation, impaired protein function, or aberrant DNA methylation. In the case of DNA methylation, I demonstrate that inhibiting DNA methylation dynamics can impair long-term memory formation, while the nurse-to- forager transition is not altered. These experiments could serve as the bases for and reference groups of studies testing the effects of metal or metalloid toxicity on DNA methylation. Each potential mechanism provides an avenue for investigating how neural function is influenced by the physiological status of non-neural organs. And from an ecological perspective, my results highlight the need for environmental policy to consider sublethal effects in determining safe environmental toxin loads for honey bees and other insect pollinators.

Contributors

Agent

Created

Date Created
  • 2016

154745-Thumbnail Image.png

Biophysical mechanism for neural spiking dynamics

Description

In the honey bee antennal lobe, uniglomerular projection neurons (uPNs) transiently spike to odor sensory stimuli with odor-specific response latencies, i.e., delays to first spike after odor

stimulation onset. Recent

In the honey bee antennal lobe, uniglomerular projection neurons (uPNs) transiently spike to odor sensory stimuli with odor-specific response latencies, i.e., delays to first spike after odor

stimulation onset. Recent calcium imaging studies show that the spatio-temporal response profile of the activated uPNs are dynamic and changes as a result

of associative conditioning, facilitating odor-detection of learned odors.

Moreover, odor-representation in the antennal lobe undergo reward-mediated plasticity processes that increase response delay variations

in the activated ensemble of uniglomerular projection neurons. Octopamine is necessarily involved in these plasticity processes. Yet, the cellular mechanisms are not

well understood. I hypothesize that octopamine modulates cholinergic transmission to uPNs by triggering translation

and upregulation of nicotinic receptors, which are more permeable to calcium. Consequently, this increased calcium-influx signals transcription factors that upregulate potassium

channels in the dendritic cortex of glomeruli, similar to synaptic plasticity mechanisms recently

shown in various insect species. A biophysical model of the antennal lobe circuit is developed in order to test the hypothesis that increased potassium channel expression in uPNs mediate response delays to first

spike, dynamically tuning odor-representations to facilitate odor-detection of learned odors.

Contributors

Agent

Created

Date Created
  • 2016

156075-Thumbnail Image.png

Modulation of sensing and sharing food-related information in the honey bee

Description

Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals

Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how experiences throughout an individual's life influence such interactions. The core question of this thesis is how individuals’ experience contributes to within-caste behavioral variation in a social group. I investigate the effects of individual history, including physical injury and food-related experience, on individuals' social food sharing behavior, responses to food-related stimuli, and the associated neural biogenic amine signaling pathways. I use the eusocial honey bee (Apis mellifera) system, one in which individuals exhibit a high degree of plasticity in responses to environmental stimuli and there is a richness of communicatory pathways for food-related information. Foraging exposes honey bees to aversive experiences such as predation, con-specific competition, and environmental toxins. I show that foraging experience changes individuals' response thresholds to sucrose, a main component of adults’ diets, depending on whether foraging conditions are benign or aversive. Bodily injury is demonstrated to reduce individuals' appetitive responses to new, potentially food-predictive odors. Aversive conditions also impact an individual's social food sharing behavior; mouth-to-mouse trophallaxis with particular groupmates is modulated by aversive foraging conditions both for foragers who directly experienced these conditions and non-foragers who were influenced via social contact with foragers. Although the mechanisms underlying these behavioral changes have yet to be resolved, my results implicate biogenic amine signaling pathways as a potential component. Serotonin and octopamine concentrations are shown to undergo long-term change due to distinct foraging experiences. My work serves to highlight the malleability of a social individual's food-related behavior, suggesting that environmental conditions shape how individuals respond to food and share information with group-mates. This thesis contributes to a deeper understanding of inter-individual variation in animal behavior.

Contributors

Agent

Created

Date Created
  • 2017

149941-Thumbnail Image.png

Ovarian regulation of honey bee (Apis mellifera) foraging division of labor

Description

There is increasing evidence that ovarian status influcences behavioral phenotype in workers of the honey bee Apis mellifera. Honey bee workers demonstrate a complex division of labor. Young workers perform

There is increasing evidence that ovarian status influcences behavioral phenotype in workers of the honey bee Apis mellifera. Honey bee workers demonstrate a complex division of labor. Young workers perform in-hive tasks (e.g. brood care), while older bees perform outside tasks (e.g. foraging for food). This age correlated division of labor is known as temporal polyethism. Foragers demonstrate further division of labor with some bees biasing collection towards protein (pollen) and others towards carbohydrates (nectar). The Reproductive Ground-plan Hypothesis proposes that the ovary plays a regulatory role in foraging division of labor. European honey bee workers that have been selectively bred to store larger amounts of pollen (High strain) also have a higher number of ovarioles per ovary than workers from strains bred to store less pollen (Low strain). High strain bees also initiate foraging earlier than Low strain bees. The relationship between ovariole number and foraging behavior is also observed in wild-type Apis mellifera and Apis cerana: pollen-biased foragers have more ovarioles than nectar-biased foragers. In my first study, I investigated the pre-foraging behavioral patterns of the High and Low strain bees. I found that High strain bees progress through the temporal polyethism at a faster rate than Low strain bees. To ensure that the observed relationship between the ovary and foraging bias is not due to associated separate genes for ovary size and foraging behavior, I investigated foraging behavior of African-European backcross bees. The backcross breeding program was designed to break potential gene associations. The results from this study demonstrated the relationship between the ovary and foraging behavior, supporting the proposed causal linkage between reproductive development and behavioral phenotype. The final study was designed to elucidate a regulatory mechanism that links ovariole number with sucrose sensitivity, and loading decisions. I measured ovariole number, sucrose sensitivity and sucrose solution load size using a rate-controlled sucrose delivery system. I found an interaction effect between ovariole number and sucrose sensitivity for sucrose solution load size. This suggests that the ovary impacts carbohydrate collection through modulation of sucrose sensitivity. Because nectar and pollen collection are not independent, this would also impact protein collection.

Contributors

Agent

Created

Date Created
  • 2011