Matching Items (4)

Filtering by

Clear all filters

151957-Thumbnail Image.png

Propensity score estimation with random forests

Description

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The results suggested that, depending on the nature of data, optimal specification of (1) decision rules to select the covariate and its split value in a Classification Tree, (2) the number of covariates randomly sampled for selection, and (3) methods of estimating Random Forests propensity scores could potentially produce an unbiased average treatment effect estimate after propensity scores weighting by the odds adjustment. Compared to the logistic regression estimation model using the true propensity score model, Random Forests had an additional advantage in producing unbiased estimated standard error and correct statistical inference of the average treatment effect. The relationship between the balance on the covariates' means and the bias of average treatment effect estimate was examined both within and between conditions of the simulation. Within conditions, across repeated samples there was no noticeable correlation between the covariates' mean differences and the magnitude of bias of average treatment effect estimate for the covariates that were imbalanced before adjustment. Between conditions, small mean differences of covariates after propensity score adjustment were not sensitive enough to identify the optimal Random Forests model specification for propensity score analysis.

Contributors

Agent

Created

Date Created
2013

149971-Thumbnail Image.png

The sensitivity of confirmatory factor analytic fit indices to violations of factorial invariance across latent classes: a simulation study

Description

Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance

Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance across observed groups is a requisite step in making meaningful cross-group comparisons, failure to attend to possible sources of latent class heterogeneity in the form of class-based differences in factor structure has the potential to compromise conclusions with respect to observed groups and may result in misguided attempts at instrument development and theory refinement. The present studies examined the sensitivity of two widely used confirmatory factor analytic model fit indices, the chi-square test of model fit and RMSEA, to latent class differences in factor structure. Two primary questions were addressed. The first of these concerned the impact of latent class differences in factor loadings with respect to model fit in a single sample reflecting a mixture of classes. The second question concerned the impact of latent class differences in configural structure on tests of factorial invariance across observed groups. The results suggest that both indices are highly insensitive to class-based differences in factor loadings. Across sample size conditions, models with medium (0.2) sized loading differences were rejected by the chi-square test of model fit at rates just slightly higher than the nominal .05 rate of rejection that would be expected under a true null hypothesis. While rates of rejection increased somewhat when the magnitude of loading difference increased, even the largest sample size with equal class representation and the most extreme violations of loading invariance only had rejection rates of approximately 60%. RMSEA was also insensitive to class-based differences in factor loadings, with mean values across conditions suggesting a degree of fit that would generally be regarded as exceptionally good in practice. In contrast, both indices were sensitive to class-based differences in configural structure in the context of a multiple group analysis in which each observed group was a mixture of classes. However, preliminary evidence suggests that this sensitivity may contingent on the form of the cross-group model misspecification.

Contributors

Agent

Created

Date Created
2011

154889-Thumbnail Image.png

Time metric in latent difference score models

Description

Time metric is an important consideration for all longitudinal models because it can influence the interpretation of estimates, parameter estimate accuracy, and model convergence in longitudinal models with latent variables. Currently, the literature on latent difference score (LDS) models does

Time metric is an important consideration for all longitudinal models because it can influence the interpretation of estimates, parameter estimate accuracy, and model convergence in longitudinal models with latent variables. Currently, the literature on latent difference score (LDS) models does not discuss the importance of time metric. Furthermore, there is little research using simulations to investigate LDS models. This study examined the influence of time metric on model estimation, interpretation, parameter estimate accuracy, and convergence in LDS models using empirical simulations. Results indicated that for a time structure with a true time metric where participants had different starting points and unequally spaced intervals, LDS models fit with a restructured and less informative time metric resulted in biased parameter estimates. However, models examined using the true time metric were less likely to converge than models using the restructured time metric, likely due to missing data. Where participants had different starting points but equally spaced intervals, LDS models fit with a restructured time metric resulted in biased estimates of intercept means, but all other parameter estimates were unbiased, and models examined using the true time metric had less convergence than the restructured time metric as well due to missing data. The findings of this study support prior research on time metric in longitudinal models, and further research should examine these findings under alternative conditions. The importance of these findings for substantive researchers is discussed.

Contributors

Agent

Created

Date Created
2016

156579-Thumbnail Image.png

Psychometric and Machine Learning Approaches to Diagnostic Classification

Description

The goal of diagnostic assessment is to discriminate between groups. In many cases, a binary decision is made conditional on a cut score from a continuous scale. Psychometric methods can improve assessment by modeling a latent variable using item response

The goal of diagnostic assessment is to discriminate between groups. In many cases, a binary decision is made conditional on a cut score from a continuous scale. Psychometric methods can improve assessment by modeling a latent variable using item response theory (IRT), and IRT scores can subsequently be used to determine a cut score using receiver operating characteristic (ROC) curves. Psychometric methods provide reliable and interpretable scores, but the prediction of the diagnosis is not the primary product of the measurement process. In contrast, machine learning methods, such as regularization or binary recursive partitioning, can build a model from the assessment items to predict the probability of diagnosis. Machine learning predicts the diagnosis directly, but does not provide an inferential framework to explain why item responses are related to the diagnosis. It remains unclear whether psychometric and machine learning methods have comparable accuracy or if one method is preferable in some situations. In this study, Monte Carlo simulation methods were used to compare psychometric and machine learning methods on diagnostic classification accuracy. Results suggest that classification accuracy of psychometric models depends on the diagnostic-test correlation and prevalence of diagnosis. Also, machine learning methods that reduce prediction error have inflated specificity and very low sensitivity compared to the data-generating model, especially when prevalence is low. Finally, machine learning methods that use ROC curves to determine probability thresholds have comparable classification accuracy to the psychometric models as sample size, number of items, and number of item categories increase. Therefore, results suggest that machine learning models could provide a viable alternative for classification in diagnostic assessments. Strengths and limitations for each of the methods are discussed, and future directions are considered.

Contributors

Agent

Created

Date Created
2018