Matching Items (7)
Filtering by

Clear all filters

136366-Thumbnail Image.png
Description
One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS.

One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS. Previous studies have shown that activation of the adenosine receptor signaling pathway through the use of agonists has been demonstrated to increase BBB permeability. For example, regadenoson is an adenosine A2A receptor agonist that has been shown to disrupt the BBB and allow for increased drug uptake in the CNS. The goal of this study was to verify this property of regadenoson. We hypothesized that co-administration of regadenoson with a non-brain penetrant macromolecule would facilitate its entry into the central nervous system. To test this hypothesis, healthy mice were administered regadenoson or saline concomitantly with a fluorescent dextran solution. The brain tissue was either homogenized to measure quantity of fluorescent molecule, or cryosectioned for imaging with confocal fluorescence microscopy. These experiments did not identify any significant difference in the amount of fluorescence detected in the brain after regadenoson treatment. These results contradict those of previous studies and highlight potential differences in injection methodology, time windows, and properties of brain impermeant molecules.
ContributorsWohlleb, Gregory Michael (Author) / Sirianni, Rachael (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
154575-Thumbnail Image.png
Description
The pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease (AD), remain difficult to ascertain in part because animal models fail to fully recapitulate the complex pathophysiology of these diseases. In vitro models of neurodegenerative diseases generated with patient derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells

The pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease (AD), remain difficult to ascertain in part because animal models fail to fully recapitulate the complex pathophysiology of these diseases. In vitro models of neurodegenerative diseases generated with patient derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) could provide new insight into disease mechanisms. Although protocols to differentiate hiPSCs and hESCs to neurons have been established, standard practice relies on two dimensional (2D) cell culture systems, which do not accurately mimic the complexity and architecture of the in vivo brain microenvironment.

I have developed protocols to generate 3D cultures of neurons from hiPSCs and hESCs, to provide more accurate models of AD. In the first protocol, hiPSC-derived neural progenitor cells (hNPCs) are plated in a suspension of Matrigel™ prior to terminal differentiation of neurons. In the second protocol, hiPSCs are forced into aggregates called embryoid bodies (EBs) in suspension culture and subsequently directed to the neural lineage through dual SMAD inhibition. Culture conditions are then changed to expand putative hNPC populations and finally differentiated to neuronal spheroids through activation of the tyrosine kinase pathway. The gene expression profiles of the 3D hiPSC-derived neural cultures were compared to fetal brain RNA. Our analysis has revealed that 3D neuronal cultures express high levels of mature pan-neuronal markers (e.g. MAP2, β3T) and neural transmitter subtype specific markers. The 3D neuronal spheroids also showed signs of neural patterning, similar to that observed during embryonic development. These 3D culture systems should provide a platform to probe disease mechanisms of AD and enable to generation of more advanced therapeutics.
ContributorsPetty, Francis (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Nikkhah, Mehdi (Committee member) / Arizona State University (Publisher)
Created2016
155427-Thumbnail Image.png
Description
An in vitro model of Alzheimer’s disease (AD) is required to study the poorly understood molecular mechanisms involved in the familial and sporadic forms of the disease. Animal models have previously proven to be useful in studying familial Alzheimer’s disease (AD) by the introduction of AD related mutations in the

An in vitro model of Alzheimer’s disease (AD) is required to study the poorly understood molecular mechanisms involved in the familial and sporadic forms of the disease. Animal models have previously proven to be useful in studying familial Alzheimer’s disease (AD) by the introduction of AD related mutations in the animal genome and by the overexpression of AD related proteins. The genetics of sporadic Alzheimer’s is however too complex to model in an animal model. More recently, AD human induced pluripotent stem cells (hiPSCs) have been used to study the disease in a dish. However, AD hiPSC derived neurons do not faithfully reflect all the molecular characteristics and phenotypes observed in the aged cells with neurodegenerative disease. The truncated form of nuclear protein Lamin-A, progerin, has been implicated in premature aging and is found in increasing concentrations as normal cells age. We hypothesized that by overexpressing progerin, we can cause cells to ‘age’ and display the neurodegenerative effects observed with aging in both diseased and normal cells. To answer this hypothesis, we first generated a retrovirus that allows for the overexpression of progerin in AD and non-demented control (NDC) hiPSC derived neural progenitor cells(NPCs). Subsequently, we generated a pure population of hNPCs that overexpress progerin and wild type lamin. Finally, we analyzed the presence of various age related phenotypes such as abnormal nuclear structure and the loss of nuclear lamina associated proteins to characterize ‘aging’ in these cells.
ContributorsRaman, Sreedevi (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2017
135508-Thumbnail Image.png
Description
Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by

Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by cell penetrating peptides, such as transactivating transciptor (TAT) peptide, which has been shown to increase efficiency of delivery. There are multiple proposed mechanisms of TAT-mediated delivery that also have size restrictions on the molecules that can undergo each BBB crossing mechanism. The effect of nanoparticle size on TAT-mediated delivery in vivo is an important aspect to research in order to better understand the delivery mechanisms and to create more efficient NPs. NPs called FluoSpheres are used because they come in defined diameters unlike polymeric NPs that have a broad distribution of diameters. Both modified and unmodified 100nm and 200nm NPs were able to bypass the BBB and were seen in the brain, spinal cord, liver, and spleen using confocal microscopy and a biodistribution study. Statistically significant differences in delivery rate of the different sized NPs or between TAT-modified and unmodified NPs were not found. Therefore in future work a larger range of diameter size will be evaluated. Also the unmodified NPs will be conjugated with scrambled peptide to ensure that both unmodified and TAT-modified NPs are prepared in identical fashion to better understand the role of size on TAT targeting. Although all the NPs were able to bypass the BBB, future work will hopefully provide a better representation of how NP size effects the rate of TAT-mediated delivery to the CNS.
ContributorsCeton, Ricki Ronea (Author) / Stabenfeldt, Sarah (Thesis director) / Sirianni, Rachael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Chronic wounds affect many people worldwide and significantly impact their quality of life. Hydrogel wound dressings are a promising option for chronic wounds due to their properties, including mild fabrication conditions, high water content, biodegradability, and bioactive molecule delivery capabilities. This thesis will explore the mechanisms that contribute to the

Chronic wounds affect many people worldwide and significantly impact their quality of life. Hydrogel wound dressings are a promising option for chronic wounds due to their properties, including mild fabrication conditions, high water content, biodegradability, and bioactive molecule delivery capabilities. This thesis will explore the mechanisms that contribute to the wound healing properties of a bovine type I collagen-based hydrogel that incorporates platelet-rich plasma and describe how this hydrogel will be capable of effectively healing chronic wounds.

ContributorsHatch, Trevor (Author) / Stabenfeldt, Sarah (Thesis director) / Vernon, Brent (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
132721-Thumbnail Image.png
Description
Tissue engineering is an emerging field focused on the repair, replacement, and regeneration of damaged tissue. Engineered tissue consists of three factors: cells, biomolecular signals, and a scaffold. Cell-free scaffolds present a unique opportunity to develop highly specific microenvironments with tunable properties. Norbornene-functionalized hyaluronic acid (NorHA) hydrogels provide spatial control

Tissue engineering is an emerging field focused on the repair, replacement, and regeneration of damaged tissue. Engineered tissue consists of three factors: cells, biomolecular signals, and a scaffold. Cell-free scaffolds present a unique opportunity to develop highly specific microenvironments with tunable properties. Norbornene-functionalized hyaluronic acid (NorHA) hydrogels provide spatial control over biomolecule binding through a photopolymerization process. With this, biomimetic gradients can be produced to model a variety of tissue interfaces. To produce these patterns, a gradient mechanism was developed to function in tandem with a syringe pump. A conversion equation was derived to calculate a panel speed from the volumetric flow rate setting on the pump. Seven speeds were used to produce fluorophore gradients on the surface of NorHA hydrogels to assess changes in the length and slope of the gradient. The results indicated a strong positive linear correlation between the speed of the panel and the length of the gradient as well as a strong negative correlation between the speed of the panel and the slope of the gradient. Additionally, the mechanism was able to successfully produce several other types of gradients including multiregional, dual, and triregional.
ContributorsSogge, Amber (Author) / Holloway, Julianne (Thesis director) / Stabenfeldt, Sarah (Committee member) / Fumasi, Fallon (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
158493-Thumbnail Image.png
Description
Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work

Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work summarizes efforts to further understanding of satellite cell biology, using novel model organisms, bioengineering, and molecular and cellular approaches. Lizards are evolutionarily the closest vertebrates to humans that regenerate entire appendages. An analysis of lizard myoprogenitor cell transcriptome determined they were most transcriptionally similar to mammalian satellite cells. Further examination showed that among genes with the highest level of expression in lizard satellite cells were an increased number of regulators of chondrogenesis. In micromass culture, lizard satellite cells formed nodules that expressed chondrogenic regulatory genes, thus demonstrating increased musculoskeletal plasticity. However, to exploit satellite cells for therapeutics, development of an ex vivo culture is necessary. This work investigates whether substrates composed of extracellular matrix (ECM) proteins, as either coatings or hydrogels, can support expansion of this population whilst maintaining their myogenic potency. Stiffer substrates are necessary for in vitro proliferation and differentiation of satellite cells, while the ECM composition was not significantly important. Additionally, satellite cells on hydrogels entered a quiescent state that could be reversed when the cells were subsequently cultured on Matrigel. Proliferation and gene expression data further indicated that C2C12 cells are not a good proxy for satellite cells. To further understand how different signaling pathways control satellite cell behavior, an investigation of the Notch inhibitor protein Numb was carried out. Numb deficient satellite cells fail to activate, proliferate and participate in muscle repair. Examination of Numb isoform expression in satellite cells and embryonic tissues revealed that while developing limb bud, neural tube, and heart express the long and short isoforms of NUMB, satellite cells predominantly express the short isoforms. A preliminary immunoprecipitation- proteomics experiment suggested that the roles of NUMB in satellite cells are related to cell cycle modulation, cytoskeleton dynamics, and regulation of transcription factors necessary for satellite cell function.
ContributorsPalade, Joanna (Author) / Wilson-Rawls, Norma (Thesis advisor) / Rawls, Jeffrey (Committee member) / Kusumi, Kenro (Committee member) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2020