Matching Items (9)
Filtering by

Clear all filters

151532-Thumbnail Image.png
Description
Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the

Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the supply of purge air as this decreases the net power output as well as efficiency of the gas turbine. Since the purge air influences the disk cavity flow field and effectively the amount of ingestion, the aim of this work was to study the cavity velocity field experimentally using Particle Image Velocimetry (PIV). Experiments were carried out in a model single-stage axial flow turbine set-up that featured blades as well as vanes, with purge air supplied at the hub of the rotor-stator disk cavity. Along with the rotor and stator rim seals, an inner labyrinth seal was provided which split the disk cavity into a rim cavity and an inner cavity. First, static gage pressure distribution was measured to ensure that nominally steady flow conditions had been achieved. The PIV experiments were then performed to map the velocity field on the radial-tangential plane within the rim cavity at four axial locations. Instantaneous velocity maps obtained by PIV were analyzed sector-by-sector to understand the rim cavity flow field. It was observed that the tangential velocity dominated the cavity flow at low purge air flow rate, its dominance decreasing with increase in the purge air flow rate. Radially inboard of the rim cavity, negative radial velocity near the stator surface and positive radial velocity near the rotor surface indicated the presence of a recirculation region in the cavity whose radial extent increased with increase in the purge air flow rate. Qualitative flow streamline patterns are plotted within the rim cavity for different experimental conditions by combining the PIV map information with ingestion measurements within the cavity as reported in Thiagarajan (2013).
ContributorsPathak, Parag (Author) / Roy, Ramendra P (Thesis advisor) / Calhoun, Ronald (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2013
133170-Thumbnail Image.png
Description
With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still

With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still have some way to go before they are viable systems for drug delivery. One of the main reasons for this is a lack of fabrication processes and systems which produce monodisperse particles while also being feasible for industrialization [10]. This honors thesis investigates various microparticle fabrication techniques \u2014 two using mechanical agitation and one using fluid dynamics \u2014 with the long term goal of incorporating norepinephrine and adenosine into the particles for metabolic stimulatory purposes. It was found that mechanical agitation processes lead to large values for dispersity and the polydispersity index while fluid dynamics methods have the potential to create more uniform and predictable outcomes. The research concludes by needing further investigation into methods and prototype systems involving fluid dynamics methods; however, these systems yield promising results for fabricating monodisperse particles which have the potential to encapsulate a wide variety of therapeutic drugs.
ContributorsRiley, Levi Louis (Author) / Vernon, Brent (Thesis director) / VanAuker, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
154534-Thumbnail Image.png
Description
Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of

Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of cerebral aneurysms is therefore essential to public health. The goal of treating an aneurysm is to isolate the aneurysm from its surrounding circulation, thereby preventing further growth and rupture. Endovascular treatment for cerebral aneurysms has gained popularity over traditional surgical techniques due to its minimally invasive nature and shorter associated recovery time. The hemodynamic modifications that the treatment effects can promote thrombus formation within the aneurysm leading to eventual isolation. However, different treatment devices can effect very different hemodynamic outcomes in aneurysms with different geometries.

Currently, cerebral aneurysm risk evaluation and treatment planning in clinical practice is largely based on geometric features of the aneurysm including the dome size, dome-to-neck ratio, and parent vessel geometry. Hemodynamics, on the other hand, although known to be deeply involved in cerebral aneurysm initiation and progression, are considered to a lesser degree. Previous work in the field of biofluid mechanics has demonstrated that geometry is a driving factor behind aneurysmal hemodynamics.

The goal of this research is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Geometric main effects were analyzed to quantify contributions made by geometric factors that describe cerebral aneurysms (i.e., dome size, dome-to-neck ratio, and inflow angle) to clinically relevant hemodynamic responses (i.e., wall shear stress, root mean square velocity magnitude and cross-neck flow). Computational templates of idealized bifurcation and sidewall aneurysms were created to satisfy a two-level full factorial design, and examined using computational fluid dynamics. A subset of the computational bifurcation templates was also translated into physical models for experimental validation using particle image velocimetry. The effects of geometry on treatment were analyzed by virtually treating the aneurysm templates with endovascular devices. The statistical relationships between geometry, treatment, and flow that emerged have the potential to play a valuable role in clinical practice.
ContributorsNair, Priya (Author) / Frakes, David (Thesis advisor) / Vernon, Brent (Committee member) / Chong, Brian (Committee member) / Pizziconi, Vincent (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2016
153706-Thumbnail Image.png
Description
The application of novel visualization and modeling methods to the study of cardiovascular disease is vital to the development of innovative diagnostic techniques, including those that may aid in the early detection and prevention of cardiovascular disorders. This dissertation focuses on the application of particle image velocimetry (PIV) to the

The application of novel visualization and modeling methods to the study of cardiovascular disease is vital to the development of innovative diagnostic techniques, including those that may aid in the early detection and prevention of cardiovascular disorders. This dissertation focuses on the application of particle image velocimetry (PIV) to the study of intracardiac hemodynamics. This is accomplished primarily though the use of ultrasound based PIV, which allows for in vivo visualization of intracardiac flow without the requirement for optical access, as is required with traditional camera-based PIV methods.

The fundamentals of ultrasound PIV are introduced, including experimental methods for its implementation as well as a discussion on estimating and mitigating measurement error. Ultrasound PIV is then compared to optical PIV; this is a highly developed technique with proven accuracy; through rigorous examination it has become the “gold standard” of two-dimensional flow visualization. Results show good agreement between the two methods.

Using a mechanical left heart model, a multi-plane ultrasound PIV technique is introduced and applied to quantify a complex, three-dimensional flow that is analogous to the left intraventricular flow. Changes in ventricular flow dynamics due to the rotational orientation of mechanical heart valves are studied; the results demonstrate the importance of multi-plane imaging techniques when trying to assess the strongly three-dimensional intraventricular flow.

The potential use of ultrasound PIV as an early diagnosis technique is demonstrated through the development of a novel elasticity estimation technique. A finite element analysis routine is couple with an ensemble Kalman filter to allow for the estimation of material elasticity using forcing and displacement data derived from PIV. Results demonstrate that it is possible to estimate elasticity using forcing data derived from a PIV vector field, provided vector density is sufficient.
ContributorsWesterdale, John Curtis (Author) / Adrian, Ronald (Thesis advisor) / Belohlavek, Marek (Committee member) / Squires, Kyle (Committee member) / Trimble, Steve (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2015
154254-Thumbnail Image.png
Description
Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments

Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments are required to validate these simulations against real world data, and a pulsatile flow pump system can provide physiologic flow conditions characteristic of the aorta.

This dissertation presents improved experimental techniques for in vitro aortic blood flow and the increasingly larger parts of the human cardiovascular system. Specifically, this work develops new flow management and measurement techniques for cardiovascular flow experiments with the aim to improve clinical evaluation and treatment planning of aortic diseases.

The hypothesis of this research is that transient flow driven by a step change in volume flux in a piston-based pulsatile flow pump system behaves differently from transient flow driven by a step change in pressure gradient, the development time being substantially reduced in the former. Due to this difference in behavior, the response to a piston-driven pump can be predicted in order to establish inlet velocity and flow waveforms at a downstream phantom model.

The main objectives of this dissertation were: 1) to design, construct, and validate a piston-based flow pump system for aortic flow experiments, 2) to characterize temporal and spatial development of start-up flows driven by a piston pump that produces a step change from zero flow to a constant volume flux in realistic (finite) tube geometries for physiologic Reynolds numbers, and 3) to develop a method to predict downstream velocity and flow waveforms at the inlet of an aortic phantom model and determine the input waveform needed to achieve the intended waveform at the test section. Application of these newly improved flow management tools and measurement techniques were then demonstrated through in vitro experiments in patient-specific coarctation of aorta flow phantom models manufactured in-house and compared to computational simulations to inform and execute future experiments and simulations.
ContributorsChaudhury, Rafeed Ahmed (Author) / Frakes, David (Thesis advisor) / Adrian, Ronald J (Thesis advisor) / Vernon, Brent (Committee member) / Pizziconi, Vincent (Committee member) / Caplan, Michael (Committee member) / Arizona State University (Publisher)
Created2015
131712-Thumbnail Image.png
Description
NIPAAm co-DEAEMA hydrogels are a potential solution for sustained, local delivery of ketorolac tromethamine. Current methods of postoperative pain management, such as local anesthetics, NSAIDs, and opioids, can be improved by minimizing side effects while still effectively treating severe and extreme pain. Though high doses of ketorolac can be toxic,

NIPAAm co-DEAEMA hydrogels are a potential solution for sustained, local delivery of ketorolac tromethamine. Current methods of postoperative pain management, such as local anesthetics, NSAIDs, and opioids, can be improved by minimizing side effects while still effectively treating severe and extreme pain. Though high doses of ketorolac can be toxic, sustained, local delivery via hydrogels offers a promising solution. Four ketorolac release studies were conducted using PNDJ hydrogels formulated by Sonoran Biosciences. The first two studies tested a range of JAAm concentration between 1.4 and 2.2 mole percent. Both had high initial release rates lasting less than 7 days and appeared to be unaffected by JAAm content. Tobramycin slowed down the release of ketorolac but was unable to sustain release for more than 6 days. Incorporating DEAEMA prolonged the release of ketorolac for up to 14 days with significant reductions in initial burst release rate. Low LCST of NIPAAM co-DEAEMA polymer is problematic for even drug distribution and future in vivo applications.
ContributorsHui, Nathan (Author) / Vernon, Brent (Thesis director) / Heffernan, John (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132760-Thumbnail Image.png
Description
Advancements in healthcare and the emergence of an aging population has led to an increase in the number of prosthetic joint procedures in the United States. According to Healthcare Cost and Utilization Project, 660,876 and 348,970 total hip and knee arthroplasties were performed in 2014[1].The percentage of total hip or

Advancements in healthcare and the emergence of an aging population has led to an increase in the number of prosthetic joint procedures in the United States. According to Healthcare Cost and Utilization Project, 660,876 and 348,970 total hip and knee arthroplasties were performed in 2014[1].The percentage of total hip or knee procedures that are revised due to an infection is 1.23% and 1.21% respectively[3], [4]. Although the percent of infections may be small, an infection can have a tremendous burden on the patient and healthcare system. It is expected that prosthetic joint infections (PJIs) will cost the healthcare system an estimated $1.62 billion by 2020[5]. PJIs are often difficult to treat due to the formation of biofilm at the site of the infection. A large majority of PJIs are the result of a bacterial biofilm, but around 1% of PJIs are due to fungal infections[3]. The current method of treatment is to surgically remove all infected tissue at the site of infection through a process called debridement and then insert a medicated bone cement spacer[7], [10]–[12]. One such medication that is loaded into the bone cement is caspofungin, a member of the echinocandin class of compounds that inhibit the synthesis of 1,3-β-D-glucan which is a crucial element of the cell wall of the target fungi[13]–[15]. For the studies reported herein, the caspofungin-loaded bone cement samples were made at 5 dosage strengths according to standard operating room practices. The elution of the drug was analyzed using ultraviolet spectrophotometry. The elution profiles were analyzed for 19 days consecutively, during which the 70 mg, 1 g, and 5 g dosage groups showed a prolonged, sustained release of the caspofungin. The 70 mg and 1 g dosage cumulative mass release profiles were not statistically significant, but it is unlikely that the difference would not have a clinical significance especially in the treatment of a fungal biofilm infection. The determination of the elution profile for caspofungin from loaded-bone cement can provide clinicians with a basis for how the drug will release into the infected joint.
ContributorsMoore, Rex C. (Author) / Vernon, Brent (Thesis director) / Overstreet, Derek (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
164948-Thumbnail Image.png
Description

Alginate microspheres have recently become increasingly popular in the realm of drug delivery for their biocompatibility, nontoxicity, inexpensiveness, among other factors. Recent strict regulations on microsphere size have drastically increased manufacturing cost and waste, even though the effect of size variance on drug delivery and subsequent performance is unclear. If

Alginate microspheres have recently become increasingly popular in the realm of drug delivery for their biocompatibility, nontoxicity, inexpensiveness, among other factors. Recent strict regulations on microsphere size have drastically increased manufacturing cost and waste, even though the effect of size variance on drug delivery and subsequent performance is unclear. If sphere size variance does not significantly affect drug release profiles, it is possible that future ordinances may loosen tolerances in manufacturing to limit waste produced and expenditures. We use a mathematical model developed by Nickel et al. [12], to theoretically predict drug delivery profiles based on sphere size, and correlate the expected release with experimental data. This model considers diffusion as the key component for drug delivery, which is defined by Fick’s Laws of Diffusion. Alginate, chosen for its simple fabrication method and biocompatibility, was formed into microspheres with a modified extrusion technique and characterized by size. Size variance was introduced in batches and delivery patterns were compared to control groups of identical size. Release patterns for brilliant blue dye, the mock drug chosen, were examined for both groups via UV spectrometry. The absorbance values were then converted to concentration value using a calibration curve done prior to experimentation. The concentration values were then converted to mass values. These values then produced curves representing the mass of the drug released over time. Although the control and experimental values were statistically significantly different, the curves were rather similar to each other. However, when compared to the predicted release pattern, the curves were not the same. Unexpected degradation caused this dissimilarity between the curves. The predictive model was then adjusted to account for degradation by changing the diffusion coefficient in the code to a reciprocal first order exponent. The similarity between the control and experimental curves can insinuate the notion that size tolerances for microsphere production can be somewhat lenient, as a batch containing fifteen beads of the same size and one with three different sizes yields similar release patterns.

ContributorsLyons, Quincy (Author) / de la Rocha, Gabriel (Co-author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164949-Thumbnail Image.png
Description
Alginate microspheres have recently become increasingly popular in the realm of drug delivery for their biocompatibility, nontoxicity, inexpensiveness, among other factors. Recent strict regulations on microsphere size have drastically increased manufacturing cost and waste, even though the effect of size variance on drug delivery and subsequent performance is unclear.

Alginate microspheres have recently become increasingly popular in the realm of drug delivery for their biocompatibility, nontoxicity, inexpensiveness, among other factors. Recent strict regulations on microsphere size have drastically increased manufacturing cost and waste, even though the effect of size variance on drug delivery and subsequent performance is unclear. If sphere size variance does not significantly affect drug release profiles, it is possible that future ordinances may loosen tolerances in manufacturing to limit waste produced and expenditures. We use a mathematical model developed by Nickel et al. [12], to theoretically predict drug delivery profiles based on sphere size, and correlate the expected release with experimental data. This model considers diffusion as the key component for drug delivery, which is defined by Fick’s Laws of Diffusion. Alginate, chosen for its simple fabrication method and biocompatibility, was formed into microspheres with a modified extrusion technique and characterized by size. Size variance was introduced in batches and delivery patterns were compared to control groups of identical size. Release patterns for brilliant blue dye, the mock drug chosen, were examined for both groups via UV spectrometry. The absorbance values were then converted to concentration value using a calibration curve done prior to experimentation. The concentration values were then converted to mass values. These values then produced curves representing the mass of the drug released over time. Although the control and experimental values were statistically significantly different, the curves were rather similar to each other. However, when compared to the predicted release pattern, the curves were not the same. Unexpected degradation caused this dissimilarity between the curves. The predictive model was then adjusted to account for degradation by changing the diffusion coefficient in the code to a reciprocal first order exponent. The similarity between the control and experimental curves can insinuate the notion that size tolerances for microsphere production can be somewhat lenient, as a batch containing fifteen beads of the same size and one with three different sizes yields similar release patterns.
Contributorsde la Rocha, Gabriel (Author) / Lyons, Quincy (Co-author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05