Matching Items (4)
Filtering by

Clear all filters

136509-Thumbnail Image.png
Description
The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA

The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA shell surrounding the PLGA core. The microparticles were loaded with bovine serum albumin (BSA) and different volumes of ethanol were added to the PLA shell phase to alter the porosity and release characteristics of the BSA. Different amounts of ethanol varied the total loading percentage of the BSA, the release profile, surface morphology, size distribution, and the localization of the protein within the particles. Scanning electron microscopy images detailed the surface morphology of the different particles. Loading the particles with fluorescently tagged insulin and imaging the particles through confocal microscopy supported the localization of the protein inside the particle. The study suggest that ethanol alters the release characteristics of the loaded BSA encapsulated in the microparticles supporting the use of a polar, protic solvent as a tool for tuning the delayed release profile of biological proteins.
ContributorsFauer, Chase Alexander (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
Description
Imaging analysis of local drug delivery is important because in both studies involving chemotherapy targeted toward glioblastoma and antimicrobial addressing infection, the drug concentration and distribution are unknown. There are a variety of studies focused on the local delivery of drug to a targeted location, but we are presenting a

Imaging analysis of local drug delivery is important because in both studies involving chemotherapy targeted toward glioblastoma and antimicrobial addressing infection, the drug concentration and distribution are unknown. There are a variety of studies focused on the local delivery of drug to a targeted location, but we are presenting a way of quantifying the concentration of the drug and the distribution of the drug during a period of time. This study aims to do that by utilizing Materialise Mimics to analyze the MRI images of local drug delivery in glioblastoma in canines and antimicrobial gel in rabbit femurs. The focus of the technique is to register the anatomy in T1-weighted spin echo images to the drug delivery in T2 flow attenuated inversion recovery (FLAIR) images in order to see where the drug went and did not go relative to the anatomical part. Both studies focus on addressing effective volumes of drug to a designated anatomical area, in which the delivery can be difficult as it involves bypassing the blood brain barrier in the first study and achieving effective volumes while preventing toxicity to the kidneys in the second study. The goal of this project lies in determining the drug volumes and location for the specified duration and anatomical part.
ContributorsJehng, Hope (Author) / Caplan, Michael (Thesis director) / Sirianni, Rachael (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134755-Thumbnail Image.png
Description
The objective of this research is to create biodegradable mats with tunable characteristics such as fiber diameter and surface area. The drug delivery mats enable spatially controlled delivery of disease-specific therapeutics. Using a large electric potential to draw fibers from a solution flowing at a specific rate, the polymer

The objective of this research is to create biodegradable mats with tunable characteristics such as fiber diameter and surface area. The drug delivery mats enable spatially controlled delivery of disease-specific therapeutics. Using a large electric potential to draw fibers from a solution flowing at a specific rate, the polymer fibers reach a grounded target several inches away. The biodegradable polymer used in this study was poly(lactic acid-co-glycolic acid) (PLGA). PLGA solutions ranging from 0.5 to 27 wt.% were prepared by dissolving the block copolymer in a solvent mixture containing tetrahydrofuran (THF) and dimethylformamide (DMF) at a 3:1 weight ratio. They were then electrospun at needle-to-target distances of 7, 14, and 18 cm and rates ranging from 0.8 to 4 mL/h. The range of voltage used was between 8 – 15 kV, which was based on the observation of the formation of a Taylor cone, largely affected by on the environment and weather (e.g., temperature and humidity in the lab). A 27 wt.% PLGA solution, electrospun at 1 mL/h at a voltage of 11.25 kV and needle-to-target distance of 14 cm produced uniform fibers with an average fiber diameter of 0.985 m. All other parameters outside the range given created beaded fibers. In addition, solution rheology was performed on some of the PLGA solution to measure viscosity, which is directly correlated to the fiber diameter of the electrospun mats. Observing the impact of solvent on fiber spinning and fiber diameter brings about many positive results in developing fully characterized and well-understood fibrous mats for drug delivery. The nanoscale fibers will be used as drug delivery mats and, therefore, the biodegradation kinetics of the polymers will be studied. Next, parameters of the polymers as well as the polymeric mats will be correlated to the degradation-mediated release of small molecule therapeutics (e.g., peptides, drugs, etc.) such that time-resolved dosing profiles can be created.
ContributorsLent, Madeline (Author) / Green, Matthew (Thesis director) / Holloway, Julianne (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and time effectiveness. Theoretical data for the time to 60% drug release and the slope and intercept of the log-log plot were collected and subjected to statistical analysis in JMP. Since the scope of this project focuses on microparticle surface degradation drug release with no drug diffusion, the characteristic variables relating to the slope (n = diffusional release exponent) and the intercept (k = kinetic constant) do not directly apply to the distribution model within the scope of the research. However, these variables are useful for analysis when the Mathcad template is applied to other types of drug release models.

ContributorsHan, Priscilla (Author) / Vernon, Brent (Thesis director) / Nickle, Jacob (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05