Matching Items (9)
Filtering by

Clear all filters

133170-Thumbnail Image.png
Description
With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still

With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still have some way to go before they are viable systems for drug delivery. One of the main reasons for this is a lack of fabrication processes and systems which produce monodisperse particles while also being feasible for industrialization [10]. This honors thesis investigates various microparticle fabrication techniques \u2014 two using mechanical agitation and one using fluid dynamics \u2014 with the long term goal of incorporating norepinephrine and adenosine into the particles for metabolic stimulatory purposes. It was found that mechanical agitation processes lead to large values for dispersity and the polydispersity index while fluid dynamics methods have the potential to create more uniform and predictable outcomes. The research concludes by needing further investigation into methods and prototype systems involving fluid dynamics methods; however, these systems yield promising results for fabricating monodisperse particles which have the potential to encapsulate a wide variety of therapeutic drugs.
ContributorsRiley, Levi Louis (Author) / Vernon, Brent (Thesis director) / VanAuker, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
Measles and mumps are highly contagious, vaccine-preventable diseases with cases continuing to persist in high two-dose vaccinated populations. Recent outbreaks on university and college campuses across the United States prompt a need for further understanding of the immunity levels afforded by the MMR vaccine which has significantly decreased incidence rates

Measles and mumps are highly contagious, vaccine-preventable diseases with cases continuing to persist in high two-dose vaccinated populations. Recent outbreaks on university and college campuses across the United States prompt a need for further understanding of the immunity levels afforded by the MMR vaccine which has significantly decreased incidence rates of measles and mumps since it was introduced.
Current methods for IgG antibody detection include enzyme immunoassays (EIA) such as the commercially available Diamedix Immunosimplicity® Measles IgG test kit and the Diamedix Immunosimplicity® Mumps IgG test kit. EIAs generally provide high sensitivity and strong specificity, however, there is a need for rapid screening of measles and mumps specific immunity in outbreak and resource-limited areas which could be solved by use a point-of-care (POC) platform.
This study aims to optimize a point-of-care device for the multiplexed detection of MeV, MuV, and RuV IgG antibodies in sera and to compare the sensitivity to commercial enzyme immunoassays. The IgG antibody levels to MeV and MuV were measured using EIA test kits for a total of 44 healthy serum samples. Of the samples, 6% were seronegative for MeV-specific IgG antibodies and 75% were seronegative for MuV-specific antibodies, showing low correlation of IgG antibody levels between both viruses.
To improve the sensitivity of the POC device, multiple conjugated fluorescent secondary antibodies were tested with different surface chemistries. Signal detection was measured using the pre-developed four-site slide reader. Preliminary data show that Nile Red microspheres provide robust signal detection and should be the secondary antibody of choice when sera are tested for IgG antibodies using the POC platform in future work.
ContributorsBharaj, Tirinder K. (Author) / Anderson, Karen (Thesis director) / Green, Alexander (Committee member) / Ewaisha, Radwa (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154884-Thumbnail Image.png
Description
Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions.

Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions. Current diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. Commercially available Diamedix Immunosimplicity® Measles IgG test kit has been shown to have 91.1% sensitivity and 93.8% specificity, with a positive predictive value of 88.7% and a negative predictive value of 90.9% on the basis of a PRN titer of 120. There is an increasing need for rapid screening for measles specific immunity in outbreak settings. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to three individual measles virus (MeV) proteins.

Measles virus (MeV) genes were subcloned into the pJFT7_nGST vector to generate N- terminal GST fusion proteins. Single MeV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured with mouse anti-GST mAb and sheep anti-mouse IgG. Relative light units (RLUs) as luminescence was measured. Antibodies to MeV antigens were measured in 40 serum samples from healthy subjects.

Protein expression of three MeV genes of interest was measured in comparison with vector control and statistical significance was determined using the Student’s t-test (p<0.05). N expressed at the highest level with an average RLU value of 3.01 x 109 (p<0.001) and all proteins were expressed at least 50% greater than vector control (4.56 x 106 RLU). 36/40 serum samples had IgG to N (Ag:GST ratio>1.21), F (Ag:GST ratio>1.92), or H (Ag:GST ratio> 1.23).

These data indicate that the in vitro expression of MeV antigens, N, F, and H, were markedly improved by subcloning into pJFT7_nGST vector to generate N-terminal GST fusion proteins. The expression of single MeV genes N, F and H, are suitable antigens for serologic capture analysis of measles-specific antibodies. These preliminary data can be used to design a more intensive study to explore the possibilities of using these MeV antigens as a diagnostic marker.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis advisor) / Blattman, Joseph (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2016
148276-Thumbnail Image.png
Description

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo from the bodily environment, and reduction in systemic side effects. This experiment used a single emulsion technique to encapsulate L-tyrosine in PLGA microparticles and UV spectrophotometry to analyze the drug release over a period of one week. The release assay found that for the tested samples, the released amount is distinct initially, but is about the same after 4 days, and they generally follow the same normalized percent released pattern. The experiment could continue with testing more samples, test the same samples for a longer duration, and look into higher w/w concentrations such as 20% or 50%.

ContributorsSeo, Jinpyo (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
171420-Thumbnail Image.png
Description
Autoimmunity develops when the immune system targets self-antigens within the body. Rheumatoid arthritis (RA) is a common autoimmune disease, and its progression is characterized by pro-inflammatory immune cells rapidly proliferating, migrating, and infiltrating joint tissue to provoke inflammation. In order to fulfill this taxing autoreactive response, an increase in energy

Autoimmunity develops when the immune system targets self-antigens within the body. Rheumatoid arthritis (RA) is a common autoimmune disease, and its progression is characterized by pro-inflammatory immune cells rapidly proliferating, migrating, and infiltrating joint tissue to provoke inflammation. In order to fulfill this taxing autoreactive response, an increase in energy metabolism is required by immune cells, such as dendritic cells (DCs). Therefore, a shift in DC energy reliance from the Krebs cycle toward glycolysis occurs. This metabolic shift phenotypically transitions DCs from anti-inflammatory properties toward an aggressive pro-inflammatory phenotype, in turn activating pro-inflammatory T cells and promoting RA pathogenesis. If the disease persists uncontrollably, further complications and eventual joint dysfunction can occur. Although, clinically approved drugs can prevent RA progression, they require frequent administration for temporary symptom relief. Furthermore, current approved biological products for RA are not known to have a direct modulatory effect on immunometabolism. Given that cellular metabolism controls immune cell function, this work aims to harness perturbations within RA immune cell energy metabolism and utilizes it as a therapeutic target by reprogramming immune cell metabolism via the delivery of metabolite-based particles. The two-time delivery of these particles reduced RA inflammation in a RA collagen-induced arthritis (CIA) mouse model and generated desired responses with long-term effects. Specifically, this work was achieved by: Aim 1 – developing and delivering metabolite-based polymeric microparticles synthesized from the Krebs cycle metabolite, alpha-ketoglutarate (aKG; termed paKG MPs) to DCs to modulate their energy metabolism and promote anti-inflammatory properties (in context of RA). Aim 2 – exploiting the encapsulation ability of paKG MPs to inhibit DC glycolysis in the presence of the CIA self-antigen (collagen type II (bc2)) for the treatment of RA in CIA mice. Herein, paKG MPs encapsulating a glycolytic inhibitor and bc2 induce an anti-inflammatory DC phenotype in vitro and generate suppressive bc2-specific T cell responses and reduce paw inflammation in CIA mice.
ContributorsMangal, Joslyn Lata (Author) / Acharya, Abhinav P (Thesis advisor) / Florsheim, Esther B (Committee member) / Wu, Hsin-Jung Joyce (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2022
157613-Thumbnail Image.png
Description
Glioblastoma (GBM) is a highly invasive and deadly late stage tumor that develops from abnormal astrocytes in the brain. With few improvements in treatment over many decades, median patient survival is only 15 months and the 5-year survival rate hovers at 6%. Numerous challenges are encountered in the development of

Glioblastoma (GBM) is a highly invasive and deadly late stage tumor that develops from abnormal astrocytes in the brain. With few improvements in treatment over many decades, median patient survival is only 15 months and the 5-year survival rate hovers at 6%. Numerous challenges are encountered in the development of treatments for GBM. The blood-brain barrier (BBB) serves as a primary obstacle due to its innate ability to prevent unwanted molecules, such as most chemotherapeutics, from entering the brain tissue and reaching malignant cells. The GBM cells themselves serve as a second obstacle, having a high level of genetic and phenotypic heterogeneity. This characteristic improves the probability of a population of cells to have resistance to treatment, which ensures the survival of the tumor. Here, the development and testing of two different modes of therapy for treating GBM is described. These therapeutics were enhanced by pathogenic peptides known to improve entry into brain tissue or to bind GBM cells to overcome the BBB and/or tumor cell heterogeneity. The first therapeutic utilizes a small peptide, RVG-29, derived from the rabies virus glycoprotein to improve brain-specific delivery of nanoparticles encapsulated with a small molecule payload. RVG-29-targeted nanoparticles were observed to reach the brain of healthy mice in higher concentrations 2 hours following intravenous injection compared to control particles. However, targeted camptothecin-loaded nanoparticles were not capable of producing significant treatment benefits compared to non-targeted particles in an orthotopic mouse model of GBM. Peptide degradation following injection was shown to be a likely cause for reduced treatment benefit. The second therapeutic utilizes chlorotoxin, a non-toxic 36-amino acid peptide found in the venom of the deathstalker scorpion, expressed as a fusion to antibody fragments to enhance T cell recognition and killing of GBM. This candidate biologic, known as anti-CD3/chlorotoxin (ACDClx) is expressed as an insoluble protein in Nicotiana benthamiana and Escherichia coli and must be purified in denaturing and reducing conditions prior to being refolded. ACDClx was shown to selectively activate T cells only in the presence of GBM cells, providing evidence that further preclinical development of ACDClx as a GBM immunotherapy is warranted.
ContributorsCook, Rebecca Leanne (Author) / Blattman, Joseph N (Thesis advisor) / Sirianni, Rachael W. (Thesis advisor) / Mor, Tsafrir (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2019
164504-Thumbnail Image.png
Description

The Human Leukocyte Antigen (HLA) is a protein on the surface of cells that is a large component of the adaptive immune response as it helps recognize foreign pathogenic material. We wonder if a set of primers designed for each HLA type could be used to amplify a wide spectrum

The Human Leukocyte Antigen (HLA) is a protein on the surface of cells that is a large component of the adaptive immune response as it helps recognize foreign pathogenic material. We wonder if a set of primers designed for each HLA type could be used to amplify a wide spectrum of HLA to improve sequencing of HLA to improve HLA-typing access. We propose the use of an HLA allele panel to determine the pulldown capacity of the primers followed by MinION sequencing and also offer a multiplexing design for running 96 patients at once. Our results show that primers can capture Class I HLA alleles and typing was successful with an average alignment accuracy of 91.7%. In conclusion this method for HLA capture could be utilized for HLA-typing with material costs of under $3.00 per sample within 3 days.

ContributorsVan Stone, Alicia (Author) / Anderson, Karen (Thesis director) / Buetow, Kenneth (Committee member) / Knappenberger, Mark (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / School of Life Sciences (Contributor)
Created2022-05
190819-Thumbnail Image.png
Description
Human Papillomavirus (HPV) is the most commonly transmitted STI and isresponsible for an estimated 5% of cancer cases worldwide. HPV infection is implicated in 70% of cervical cancer incidence and is also responsible for a variety of oropharyngeal and anogenital cancers. While vaccination has greatly reduced the cervical cancer burden in developed countries,

Human Papillomavirus (HPV) is the most commonly transmitted STI and isresponsible for an estimated 5% of cancer cases worldwide. HPV infection is implicated in 70% of cervical cancer incidence and is also responsible for a variety of oropharyngeal and anogenital cancers. While vaccination has greatly reduced the cervical cancer burden in developed countries, HPV infection remains high in developing countries due to high cost and poor access to healthcare. Several studies have highlighted the presence of anti-HPV antibodies following infection and their potential use as biomarkers for developing novel screening methods. Progression from initial infection to cancer is slow, thus presenting an opportunity for effective screening programs. Biomarker screening is an important area of cancer detection and Lateral Flow Assays (LFA) are a low cost, easy to use alternative to other screening methods that require extensive training and laboratory space. Therefore, this project proposes as a hypothesis that the development of an LFA screening for HPV specific IgG can provide clinically relevant data for the early detection of cervical dysplasia. This project adapts an LFA in a multiplexed format for fluorescence-based serologic detection of HPV specific IgG in patient plasma.
ContributorsJohns, William (Author) / Anderson, Karen (Thesis advisor) / Lake, Douglas (Committee member) / Hogue, Brenda (Committee member) / Arizona State University (Publisher)
Created2023
190721-Thumbnail Image.png
Description
Originally conceived as a way to scaffold molecules of interest into three-dimensional (3D) crystalline lattices for X ray crystallography, the field of deoxyribonucleic acid (DNA) nanotechnology has dramatically evolved since its inception. The unique properties of DNA nanostructures have promoted their use not only for X ray crystallography, but

Originally conceived as a way to scaffold molecules of interest into three-dimensional (3D) crystalline lattices for X ray crystallography, the field of deoxyribonucleic acid (DNA) nanotechnology has dramatically evolved since its inception. The unique properties of DNA nanostructures have promoted their use not only for X ray crystallography, but for a suite of biomedical applications as well. The work presented in this dissertation focuses on both of these exciting applications in the field: 1) Nucleic acid nanostructures as multifunctional drug and vaccine delivery platforms, and 2) 3D DNA crystals for structure elucidation of scaffolded guest molecules.Chapter 1 illustrates how a wide variety of DNA nanostructures have been developed for the delivery of drugs and vaccine components. However, their applications are limited under physiological conditions due to their lack of stability in low salt environments, susceptibility to enzymatic degradation, and tendency for endosomal entrapment. To address these issues, Chapter 2 describes a PEGylated peptide coating molecule was designed to electrostatically adhere to and protect DNA origami nanostructures and to facilitate their cytosolic delivery by peptide-mediated endosomal escape. The development of this molecule will aid in the use of nucleic acid nanostructures for biomedical purposes, such as the delivery of messenger ribonucleic acid (mRNA) vaccine constructs. To this end, Chapter 3 discusses the fabrication of a structured mRNA nanoparticle for more cost-efficient mRNA vaccine manufacture and proposes a multi-epitope mRNA nanostructure vaccine design for targeting human papillomavirus (HPV) type 16-induced head and neck cancers. DNA nanotechnology was originally envisioned to serve as three-dimensional scaffolds capable of positioning proteins in a rigid array for their structure elucidation by X ray crystallography. Accordingly, Chapter 4 explores design parameters, such as sequence and Holliday junction isomeric forms, for efficient crystallization of 3D DNA lattices. Furthermore, previously published DNA crystal motifs are used to site-specifically position and structurally evaluate minor groove binding molecules with defined occupancies. The results of this study provide significant advancement towards the ultimate goal of the field.
ContributorsHenry, Skylar J.W. (Author) / Stephanopoulos, Nicholas (Thesis advisor) / Anderson, Karen (Thesis advisor) / Blattman, Joseph (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2023