Matching Items (8)
Filtering by

Clear all filters

152941-Thumbnail Image.png
Description
Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical

Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys.

Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection.

The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per second. In comparison, the natural alert signal - door opening and closing - evoked the faster head turns than other stimulus conditions. These results suggest that behaviorally relevant stimulus such as alert signals evoke faster head-turn responses in marmoset monkeys.
ContributorsSimhadri, Sravanthi (Author) / Zhou, Yi (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2014
153418-Thumbnail Image.png
Description
This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum

This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum of perceived sound sources was close to four. The second experiment asked whether the amplitude modulation of multiple static sound sources could lead to the perception of auditory motion. On the horizontal and vertical planes, four independent noise sound sources with 60° spacing were amplitude modulated with consecutively larger phase delay. At lower modulation rates, motion could be perceived by human listeners in both cases. The third experiment asked whether several sources at static positions could serve as "acoustic landmarks" to improve the localization of other sources. Four continuous speech sound sources were placed on the horizontal plane with 90° spacing and served as the landmarks. The task was to localize a noise that was played for only three seconds when the listener was passively rotated in a chair in the middle of the loudspeaker array. The human listeners were better able to localize the sound sources with landmarks than without. The other experiments were with the aid of an acoustic manikin in an attempt to fuse binaural recording and motion data to localize sounds sources. A dummy head with recording devices was mounted on top of a rotating chair and motion data was collected. The fourth experiment showed that an Extended Kalman Filter could be used to localize sound sources in a recursive manner. The fifth experiment demonstrated the use of a fitting method for separating multiple sounds sources.
ContributorsZhong, Xuan (Author) / Yost, William (Thesis advisor) / Zhou, Yi (Committee member) / Dorman, Michael (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
150141-Thumbnail Image.png
Description
A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and

A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and their respective temperatures established simultaneously. Polystyrene and silica nanoparticles are synthesized with a variety of temperature-sensitive dyes such as BODIPY, rose Bengal, Rhodamine dyes 6G, 700, and 800, and Nile Blue A and Nile Red. Photographs are taken with a QImaging QM1 Questar EXi Retiga camera while particles are heated from 25 to 70 C and excited at 532 nm with a Coherent DPSS-532 laser. Photographs are converted to intensity images in MATLAB and analyzed for fluorescence intensity, and plots are generated in MATLAB to describe each dye's intensity vs temperature. Regression curves are created to describe change in fluorescence intensity over temperature. Dyes are compared as nanoparticle core material is varied. Large particles are also created to match the camera's optical resolution capabilities, and it is established that intensity values increase proportionally with nanoparticle size. Nile Red yielded the closest-fit model, with R2 values greater than 0.99 for a second-order polynomial fit. By contrast, Rhodamine 6G only yielded an R2 value of 0.88 for a third-order polynomial fit, making it the least reliable dye for temperature measurements using the polynomial model. Of particular interest in this work is Nile Blue A, whose fluorescence-temperature curve yielded a much different shape from the other dyes. It is recommended that future work describe a broader range of dyes and nanoparticle sizes, and use multiple excitation wavelengths to better quantify each dye's quantum efficiency. Further research into the effects of nanoparticle size on fluorescence intensity levels should be considered as the particles used here greatly exceed 2 ìm. In addition, Nile Blue A should be further investigated as to why its fluorescence-temperature curve did not take on a characteristic shape for a temperature-sensitive dye in these experiments.
ContributorsTomforde, Christine (Author) / Phelan, Patrick (Thesis advisor) / Dai, Lenore (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
153939-Thumbnail Image.png
Description
Sound localization can be difficult in a reverberant environment. Fortunately listeners can utilize various perceptual compensatory mechanisms to increase the reliability of sound localization when provided with ambiguous physical evidence. For example, the directional information of echoes can be perceptually suppressed by the direct sound to achieve a single, fused

Sound localization can be difficult in a reverberant environment. Fortunately listeners can utilize various perceptual compensatory mechanisms to increase the reliability of sound localization when provided with ambiguous physical evidence. For example, the directional information of echoes can be perceptually suppressed by the direct sound to achieve a single, fused auditory event in a process called the precedence effect (Litovsky et al., 1999). Visual cues also influence sound localization through a phenomenon known as the ventriloquist effect. It is classically demonstrated by a puppeteer who speaks without visible lip movements while moving the mouth of a puppet synchronously with his/her speech (Gelder and Bertelson, 2003). If the ventriloquist is successful, sound will be “captured” by vision and be perceived to be originating at the location of the puppet. This thesis investigates the influence of vision on the spatial localization of audio-visual stimuli. Participants seated in a sound-attenuated room indicated their perceived locations of either ISI or level-difference stimuli in free field conditions. Two types of stereophonic phantom sound sources, created by modulating the inter-stimulus time interval (ISI) or level difference between two loudspeakers, were used as auditory stimuli. The results showed that the light cues influenced auditory spatial perception to a greater extent for the ISI stimuli than the level difference stimuli. A binaural signal analysis further revealed that the greater visual bias for the ISI phantom sound sources was correlated with the increasingly ambiguous binaural cues of the ISI signals. This finding suggests that when sound localization cues are unreliable, perceptual decisions become increasingly biased towards vision for finding a sound source. These results support the cue saliency theory underlying cross-modal bias and extend this theory to include stereophonic phantom sound sources.
ContributorsMontagne, Christopher (Author) / Zhou, Yi (Thesis advisor) / Buneo, Christopher A (Thesis advisor) / Yost, William A. (Committee member) / Arizona State University (Publisher)
Created2015
157389-Thumbnail Image.png
Description
In these times of increasing industrialization, there arises a need for effective and energy efficient heat transfer/heat exchange devices. The focus nowadays is on identifying various methods and techniques which can aid the process of developing energy efficient devices. One of the most common heat transfer devices is a heat

In these times of increasing industrialization, there arises a need for effective and energy efficient heat transfer/heat exchange devices. The focus nowadays is on identifying various methods and techniques which can aid the process of developing energy efficient devices. One of the most common heat transfer devices is a heat exchanger. Heat exchangers are an essential commodity to any industry and their efficiency can play an important role in making industries energy efficient and reduce the energy losses in the devices, in turn decreasing energy inputs to run the industry.

One of the ways in which we can improve the efficiency of heat exchangers is by applying ultrasonic energy to a heat exchanger. This research explores the possibility of introducing the external input of ultrasonic energy to increase the efficiency of the heat exchanger. This increase in efficiency can be estimated by calculating the parameters important for the characterization of a heat exchanger, which are effectiveness (ε) and overall heat transfer coefficient (U). These parameters are calculated for both the non-ultrasound and ultrasound conditions in the heat exchanger.

This a preliminary study of ultrasound and its effect on a conventional shell-and-coil heat exchanger. From the data obtained it can be inferred that the increase in effectiveness and overall heat transfer coefficient upon the application of ultrasound is 1% and 6.22% respectively.
ContributorsAnnam, Roshan Sameer (Author) / Phelan, Patrick (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2019
168345-Thumbnail Image.png
Description
Spatial awareness (i.e., the sense of the space that we are in) involves the integration of auditory, visual, vestibular, and proprioceptive sensory information of environmental events. Hearing impairment has negative effects on spatial awareness and can result in deficits in communication and the overall aesthetic experience of life, especially in

Spatial awareness (i.e., the sense of the space that we are in) involves the integration of auditory, visual, vestibular, and proprioceptive sensory information of environmental events. Hearing impairment has negative effects on spatial awareness and can result in deficits in communication and the overall aesthetic experience of life, especially in noisy or reverberant environments. This deficit occurs as hearing impairment reduces the signal strength needed for auditory spatial processing and changes how auditory information is combined with other sensory inputs (e.g., vision). The influence of multisensory processing on spatial awareness in listeners with normal, and impaired hearing is not assessed in clinical evaluations, and patients’ everyday sensory experiences are currently not directly measurable. This dissertation investigated the role of vision in auditory localization in listeners with normal, and impaired hearing in a naturalistic stimulus setting, using natural gaze orienting responses. Experiments examined two behavioral outcomes—response accuracy and response time—based on eye movement in response to simultaneously presented auditory and visual stimuli. The first set of experiments examined the effects of stimulus spatial saliency on response accuracy and response time and the extent of visual dominance in both metrics in auditory localization. The results indicate that vision can significantly influence both the speed and accuracy of auditory localization, especially when auditory stimuli are more ambiguous. The influence of vision is shown for both normal hearing- and hearing-impaired listeners. The second set of experiments examined the effect of frontal visual stimulation on localizing an auditory target presented from in front of or behind a listener. The results show domain-specific effects of visual capture on both response time and response accuracy. These results support previous findings that auditory-visual interactions are not limited by the spatial rule of proximity. These results further suggest the strong influence of vision on both the processing and the decision-making stages of sound source localization for both listeners with normal, and impaired hearing.
ContributorsClayton, Colton (Author) / Zhou, Yi (Thesis advisor) / Azuma, Tamiko (Committee member) / Daliri, Ayoub (Committee member) / Arizona State University (Publisher)
Created2021
161898-Thumbnail Image.png
Description
Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used

Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used adsorbents namely zeolite 13X, activated alumina and silica gel is investigated. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 and 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, application of ultrasound results in higher desorption rate compared to a non-ultrasound process. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Based on the variation of desorption dynamics with ultrasonic power and frequency, three mechanisms of reduced adsorbate adsorption potential, increased adsorbate surface energy and enhanced mass diffusion are proposed. Two analytical models that describe the desorption process were developed based on the experimental data from which novel efficiency metrics were proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
ContributorsDaghooghi Mobarakeh, Hooman (Author) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Wang, Robert (Committee member) / Calhoun, Ronald (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2021
161465-Thumbnail Image.png
Description
The phase change process of freezing water is an important application in several fields such as ice making, food freezing technologies, pharmaceuticals etc. Due to the widespread usage of ice-related products, process improvements in this technology can potentially lead to substantial energy savings. After studying the freezing process of water,

The phase change process of freezing water is an important application in several fields such as ice making, food freezing technologies, pharmaceuticals etc. Due to the widespread usage of ice-related products, process improvements in this technology can potentially lead to substantial energy savings. After studying the freezing process of water, the supercooling phenomenon was found to occur which showed a negative effect. Therefore, ultrasound was proposed as a technique to reduce the supercooling effect and improve the heat transfer rate. An experimental study was conducted to analyze the energy expenditures in the freezing process with and without the application of ultrasound. After a set of preliminary experiments, an intermittent application of ultrasound at 10W & 3.5W power levels were found to be more effective than constant-power application, and were explored in further detail. The supercooling phenomenon was thoroughly studied through iterative experiments. It was also found that the application of ultrasound during the freezing process led to the formation of shard-like ice crystals. From the intermittent ultrasound experiments performed at 10W and 3.5W power levels, percentage energy enhancements relative to no ultrasound of 8.9% ± 12.4% and 11.9% ± 24.6% were observed, respectively.
ContributorsSubramanian, Varun (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2021