Matching Items (9)
Filtering by

Clear all filters

136349-Thumbnail Image.png
Description
Research suggests that the more positive the first drug experience, the more likely addiction will develop. Since smoking is initiated in a social setting, it is surprising how little is known about social context effects on acquisition of nicotine self-administration. We investigated this issue in rats during late adolescence using

Research suggests that the more positive the first drug experience, the more likely addiction will develop. Since smoking is initiated in a social setting, it is surprising how little is known about social context effects on acquisition of nicotine self-administration. We investigated this issue in rats during late adolescence using conjoined self-administration chambers that had a removable shared wall. Rats were assigned to training conditions with either a solid black plexiglass or wire mesh partition in place throughout 22 subsequent 2-hour daily training sessions. Initially, 58 day-old (late-adolescent) male and female rats received 2, 30-min habituation sessions/day over 2 consecutive days, with only an inactive lever present. Sessions began with presentation of a retractable lever and thereafter each response on that lever resulted in simultaneous delivery of saline or 1 of 2 doses of nicotine (0.015 or 0.030 mg/kg, IV) and lever retraction for a 20-second time out. The findings indicate that the social context inhibits nicotine self-administration in female rats during the development of addiction, but has little effect on the initial stages of drug acquisition. Furthermore, the data suggest that in male rats the social context enhances responding independent of nicotine, but has few effects on nicotine self-administration during the development of addiction. The findings have important implications for substance use disorders.
ContributorsDufwenberg, Martin (Author) / Neisewander, Janet (Thesis director) / Deviche, Pierre (Committee member) / Peartree, Natalie (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137055-Thumbnail Image.png
Description
This creative project explores the trend of designer/synthetic drug use in Arizona and nationwide. The project serves as "gap research" - bringing to light the problem of limited use statistics and constantly-changing drug chemical compounds. The project was thoroughly researched using media reports, psychology/drug addiction experts, community education organizers and

This creative project explores the trend of designer/synthetic drug use in Arizona and nationwide. The project serves as "gap research" - bringing to light the problem of limited use statistics and constantly-changing drug chemical compounds. The project was thoroughly researched using media reports, psychology/drug addiction experts, community education organizers and available healthcare statistics. The results provided not definitive answer other than that more work needs to be done in the area of synthetic drug use. Parents and youth must educate themselves on the dangers of using these "legal" drugs.
ContributorsFischer, April Lee (Author) / Doig, Stephen (Thesis director) / Olive, Foster (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor)
Created2014-05
134455-Thumbnail Image.png
Description
MicroRNAs are small, non-coding transcripts that control gene expression by preventing mRNA from translating into proteins. They have been implicated to play a role in many drug addictions. We previously found that miR-495 targets several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc). We also found

MicroRNAs are small, non-coding transcripts that control gene expression by preventing mRNA from translating into proteins. They have been implicated to play a role in many drug addictions. We previously found that miR-495 targets several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc). We also found miR-495 is downregulated in the NAc following acute cocaine administration, and cocaine motivation measured by breakpoint on a progressive ratio schedule of cocaine reinforcement is decreased when miR-495 is overexpressed. In this study, we manipulated the endogenous levels of miR-495 by using a viral vector. Using an animal model, rats were first trained for self-administration on a fixed ratio (FR) schedule of reinforcement. After they were infused with a lentivirus to overexpress (LV-miR-495) or decrease (LV-Sponge) miR-495, in the NAc shell. The rats were then tested for extinction and reinstatement of cocaine-seeking behavior, which are measures of motivation for cocaine. We measured the relative levels of miR-495 in the NAc shell using qRT-PCR. Our results show that overexpression of miR-495 decreased cocaine-seeking behavior during extinction and cocaine reinstatement, as we hypothesized. Surprisingly, miR-495 LV-sponge also decreased cocaine-seeking behavior in extinction, not as we hypothesized. However, we found that LV-Sponge failed to significantly decrease levels of miR-495 as intended. In conclusion, understanding why LV-Sponge decreased, rather than increased, miR-495 will need further study, however, the results with LV-miR-495 extend previous findings that miR-495 plays a vital role in the molecular mechanism that influences motivation to seek cocaine.
ContributorsChaudhury, Trisha (Author) / Neisewander, Janet (Thesis director) / Newbern, Jason (Committee member) / Powell, Gregory (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135065-Thumbnail Image.png
Description
Polysubstance abuse is far more common than single substance abuse. One of the most widely abused, yet greatly understudied combination of drugs is the simultaneous use of methamphetamine (meth) and alcohol. Because little research has been conducted on the co-abuse of meth and alcohol, it is important to study the

Polysubstance abuse is far more common than single substance abuse. One of the most widely abused, yet greatly understudied combination of drugs is the simultaneous use of methamphetamine (meth) and alcohol. Because little research has been conducted on the co-abuse of meth and alcohol, it is important to study the behavioral and neural mechanisms underlying the use of both to combat addiction and come closer to finding an effective treatment of this form of drug abuse. This study uses a rodent model to attempt to identify the mechanisms underlying this co-abuse through the stimulation of the medial forebrain bundle (MFB) and thus the activation of the mesocorticolimbic pathway, the brain's pleasure circuit. First, self-stimulation thresholds (the lowest electrical current the rats are willing to respond for) were determined using a process called Discrete Trials Training. This threshold was later used as a baseline measure to reference when the rats were administered the drugs of abuse: meth and alcohol, both alone and in combination. Our overall results did not show any significant effects of combining alcohol and meth relative to the effects of either drug alone, although subject attrition may have resulted in sample sizes that were statistically underpowered. The results of this and future studies will help provide a clearer understanding of the neural mechanisms underlying the polyabuse of meth and alcohol and can potentially lead to more successfully combating and treating this addiction.
ContributorsDrafton, Kaitlyn Marie (Author) / Olive, Foster (Thesis director) / Glenberg, Arthur (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019
131695-Thumbnail Image.png
Description
Purdue Pharma was started by Arthur, Mortimer, and Raymond Sackler in the 1950s. Its most successful product was OxyContin. Purdue failed to perform the required trials and used misleading marketing practices to promote the drug. The Sackler family encouraged these false advertising campaigns in an attempt to drive up sales.

Purdue Pharma was started by Arthur, Mortimer, and Raymond Sackler in the 1950s. Its most successful product was OxyContin. Purdue failed to perform the required trials and used misleading marketing practices to promote the drug. The Sackler family encouraged these false advertising campaigns in an attempt to drive up sales. These deceitful tactics caught up with the company and Purdue Pharma’s affiliate pled guilty to deliberately misbranding the drug in 2006. Purdue Pharma currently faces thousands of lawsuits, with Sackler family members personally named, for misleading marketing practices. States uncovering evidence of the Sackers attempting to hide their fortune via wire transfers and offshore accounts and institutions removing the family name from their doors threaten both the Purdue Pharma and the Sackler family’s money and influence.
The opioid crisis was inflamed by multiple sources, from which Purdue Pharma and other pharmaceutical companies benefited. The first is the Revolving Door, where government workers go to work for the companies they were once in charge of regulating. Existing loopholes allow former officials to immediately become lobbyists and perform consulting work. The Food and Drug Administration has close ties with lobbyists and pharmaceutical companies, which casts doubt and suspicion on its policies. Tightening and expanding current Revolving Door regulations would begin to stem this problem. Extending the cooling-off period to a minimum of five years would prevent former government workers from immediately influencing government policies. Furthermore, the laws need to be modified to include more specific language to eliminate loopholes. Banning former government employees from any counseling services or lobbying any government branch, agency, or office will make it much more difficult to circumvent the rules.
The second are “pill mills,” whereby physicians, clinics, or pharmacies prescribe prescription drugs inappropriately. There exists a web of regulation and reporting laws from federal and state governments, but pill mills still established themselves. Florida enacted laws that created stricter requirements for dispensing drugs, medical examinations, and follow-ups before and after prescribing opioids for chronic pain. These laws had positive results in stopping pill mills. Similar laws should be enacted nationally. Existing laws focusing on the pharmaceutical manufacturers, distributors, and pharmacies should be expanded to improve reporting between those agencies and the DEA and the DEA and other government agencies.
The last one is the American drug addiction rehab system. It is fraught with stigma, lax insurance information, inconsistent treatments, and poorly utilized information. The system often fails to provide care for those who need it. Increasing the scope of treatments would boost its effectiveness. States need to require insurance companies to cover mental health treatment to the same extent and degree as physical health issues and use a uniform, standardized tool to decide the necessary level of care addiction patients need. Public report cards for treatment centers would improve their long-term level of care and ease patients in finding a treatment center that fits them.
Addressing these problems has already begun at the both federal and state level. As these causes are identified and attacked, it will become easier to pass the laws needed to repair the system that allowed the opioid crisis to occur.
ContributorsNowicki, Elizabeth Anne (Author) / Koretz, Lora (Thesis director) / Moore, James (Committee member) / Department of Management and Entrepreneurship (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132611-Thumbnail Image.png
Description
Consequences of drug abuse and addiction affect both men and women, but women tend to rapidly progress through drug addiction phases, have higher drug dependency, and have higher relapse rates. Ovarian hormones fluctuate with female reproductive cycles and are thought to cause increased sensitivity to psychostimulants. Additionally, intermittent social defeat

Consequences of drug abuse and addiction affect both men and women, but women tend to rapidly progress through drug addiction phases, have higher drug dependency, and have higher relapse rates. Ovarian hormones fluctuate with female reproductive cycles and are thought to cause increased sensitivity to psychostimulants. Additionally, intermittent social defeat stress induces social avoidance, weight loss, and long-lasting cross-sensitization to psychostimulants, which is associated with increased FosB/ΔFosB expression in the nucleus accumbens (NAc) shell. In this study, we examined the estrous cycle in female rats on social defeat stress-induced amphetamine cross-sensitization through FosB/ΔFosB expression in the NAc shell. Every third day for ten days, we induced social defeat stress in rats through short confrontations with a lactating female resident rat and her pups. In parallel, a group of rats were handled for control. Vaginal swabs were taken daily to assess estrous stage. Ten days after the last stress exposure, rats were administered a low dose of amphetamine (0.5 mg/kg, i.p.), which induced cross-sensitization in stressed rats, evidenced by enhanced locomotor activity. Approximately 3-10 days after amphetamine challenge, brain tissue was collected for immunohistochemistry analyses. Stressed female rats had lower body weight gain, higher social avoidance, and increased FosB/ΔFosB expression in the NAc shell. Differences in FosB/ΔFosB expression in the NAc shell was also observed in handled animals in different estrous stages. Furthermore, rats in proestrous/estrous stages displayed enhanced social defeat stress-induced amphetamine cross-sensitization in comparison to rats in metestrous/diestrous stages. Elucidating the effects of the female reproductive cycle on drug use may provide a novel approach to treatments or therapies in preventing women’s stress-induced vulnerability to substance abuse.
ContributorsAzuma, Alyssa (Author) / Neisewander, Janet (Thesis director) / Nikulina, Ella (Thesis director) / Hammer, Ronald (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05