Matching Items (2)

Filtering by

Clear all filters

134426-Thumbnail Image.png

Lipopolymer-Mediated Transgene Delivery to Human Stem Cells

Description

Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means.

Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means. Chemical transfections are simpler in practice than both viral and nonchemical delivery of genetic material, but often suffer from cytotoxicity and low efficiency. Novel aminoglycoside antibiotic-derived lipopolymers have been synthesized to mediate transgene delivery to human cells. These polymers are comprised of either paromomycin or apramycin crosslinked with glycerol diglycidylether and derivatized with stearoyl chloride in varying molar ratios. In this work, three previously identified target lipopolymers were screened against a library of human embryonic and induced pluripotent stem cell lines. Cells were transfected with a plasmid encoding green fluorescent protein (GFP) and expression was quantified with flow cytometry 48 hours after transfection. Transfection efficiency was evaluated between three distinct lipopolymers and four lipopolymer:DNA mass ratios. GFP expression was compared to that of cells transfected with commercially available chemical gene delivery reagent controls\u2014JetPEI, Lipofectamine, and Fugene\u2014at their recommended reagent:DNA ratios. Improved transgene expression in stem cell lines allows for improved research methods. Human stem cell-derived neurons that have been genetically manipulated to express phenotypic characteristics of aging can be utilized to model neurodegenerative diseases, elucidating information about these diseases that would be inaccessible in unmanipulated tissue.

Contributors

Agent

Created

Date Created
2017-05

134534-Thumbnail Image.png

Amino Acid Templated Gold Nanoparticles as Sensors of Ionizing Radiation

Description

This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing

This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing facilities for readout. There is still a need to develop better sensors that can be clinically applied. There are numerous groups around the world trying to conceive a better dosimeter. One of the radiation sensors that was developed recently was based on fluorescence signal emitted from the sensor. To advance the field of radiation sensors, a visual indicator has been developed in-lab as a method of detect ionizing radiation. The intensity of change in color is directly dependent on the amount of incident ionizing radiation. An aqueous gold nanoparticle sensor can be used to accurately determine the incident amount of ionizing radiation1. A gold nanoparticle sensor has been developed in lab with the use of hexadecyltrimethylammonium bromide (C16TAB) as the templating molecule. In the presence of ionizing radiation, the colorless gold salt is reduced and templated, creating a dispersion within the fluid1. The formation of suspended nanoparticles leads to a color change that can be visually detected and accurately analyzed through the employment of a spectrometer. Unfortunately, the toxicity of C16TAB is high. It is expected the toxicity can be reduced by replacing C16TAB with an amino acid, as amino acids can act as templating molecules in the solution and many are naturally occuring2. The experiments included a screening of 20 natural amino acids and 12 unnatural amino acids with the gold salt solution in the presence of ionizing radiation. Stability and absorbance testing was conducted on the amino acid sensors. Additional screening of lead amino acid sensors at various concentrations of irradiation was conducted.

Contributors

Agent

Created

Date Created
2017-05