Matching Items (42)

133807-Thumbnail Image.png

New Diagnostic Methods for Detecting Microvillus Inclusion Disease

Description

Microvillus Inclusion disease is a fatal disease found in the Navajo population caused by a single nucleotide polymorphism. It is characterized by intractable diarrhea and is often fatal early in

Microvillus Inclusion disease is a fatal disease found in the Navajo population caused by a single nucleotide polymorphism. It is characterized by intractable diarrhea and is often fatal early in life.1 The current method of diagnosis is sending duodenal biopsies for histopathological examination and confirmatory testing through genomic sequencing. The purpose of this experiment was to create a more simple and cost-effective diagnostic method for detecting Microvillus Inclusion disease. Three methods were explored (RFLP2, ARMS3,4, and Tentacle Probes5,6) and two methods were tested to determine their ability and their efficiency in detecting the SNP that causes the disease.2 Tests using the RFLP2 method and synthetic DNA resulted in 9% false-positive rate and 11% false-negative rate in a blind trial for detecting both target (mutation present) and non-target (mutation absent) DNA when gel analyzing software was used to compare Rf values after gel electrophoresis. Using the ARMS method3, a nine-sample randomized test was run that ended up with 22% false-positive rate and 19% false-negative rate from a blind trial when using a gel analyzing software to determine presence of the SNP by band intensity. Disclaimer: No DNA from human patients was used in this study. Only synthetic DNA used.

Contributors

Agent

Created

Date Created
  • 2018-05

131681-Thumbnail Image.png

Characterizing Primary Mesothelioma Cell Lines by Exome Sequencing

Description

Malignant Pleural Mesothelioma is a type of lung cancer usually discovered at an advanced stage at which point there is no cure. Six primary MPM cell lines were used to

Malignant Pleural Mesothelioma is a type of lung cancer usually discovered at an advanced stage at which point there is no cure. Six primary MPM cell lines were used to conduct in vitro research to make conclusions about specific gene mutations associated with Mesothelioma. DNA exome sequencing, a time efficient and inexpensive technique, was used for identifying specific DNA mutations. Computational analysis of exome sequencing data was used to make conclusions about copy number variation among common MPM genes. Results show a CDKN2A gene heterozygous deletion in Meso24 cell line. This data is validated by a previous CRISPR-Cas9 outgrowth screen for Meso24 where the knocked-out gene caused increased Meso24 growth.

Contributors

Agent

Created

Date Created
  • 2020-05

133598-Thumbnail Image.png

Safe CRISPR: Challenges and Opportunities

Description

Conservatism is intrinsic to safety of emerging biotechnologies. Fear of unintended consequences, misuse, and bioterror are rightfully essential in our discussions of novel innovations. Clustered regularly Interspaced Short Palindromic Repeats

Conservatism is intrinsic to safety of emerging biotechnologies. Fear of unintended consequences, misuse, and bioterror are rightfully essential in our discussions of novel innovations. Clustered regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins are no exception. This review will characterize environmental and health-related risks of CRISPR-applications and expound upon mechanisms that are or can be used to minimize risk. CRISPR is broadening access and simplifying genomic and transcriptomic editing leading to wide-range usage in all of biology. Utilization in gene therapies, gene drives, and agriculture could all be universally impactful applications that need their own safety technologies and guidelines. The initial ethical guidelines and recommendations, that will guide these technologies, are being steadily developed. However, technical advances are required to facilitate safe usage. Since the advent of CRISPR gene editing in 2012 advances to limit off-target edits (both cellular and genomic) have been developed. Delivery systems that use viral or nanoparticle packaging incorporate safety mechanisms to guard against undesirable side effects are being produced and rigorously tested. Besides its applications in basic biology and potential as a gene therapy, CRISPR had humbler beginnings. Industrially it was, albeit unknowingly, used to fend off infection in productions of yogurt batches. This was one of the earliest applications of CRISPR, however with the knowledge we now have ecological and industrial uses of CRISPR have multiplied. Gene drives have the power to spread genetic mutations throughout populations and agricultural uses to better crop genomes are also of interest. These uses have struck a chord with interest groups (environmentalists, anti-GMO groups, etc) who imagine how this technology can drastically alter species with unforeseen evolutionary changes that could reshape present-day ecosystems. This review will describe existing technologies that will safeguard humanity and its interests while fully employing CRISPRs far-reaching potentiality.

Contributors

Agent

Created

Date Created
  • 2018-05

136814-Thumbnail Image.png

Electromyograph Remote Control Jellyfish Toy: A Brief Exploration of Jellyfish Biomimetics

Description

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.

Contributors

Agent

Created

Date Created
  • 2014-05

135506-Thumbnail Image.png

Investigating the Effect of a Hyaluronic Acid-Laminin Hydrogel on Inflammation After Traumatic Brain Injury

Description

Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term

Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade, gliosis, and astrocyte activation surrounding the injury lesion, and no current treatments exist to alleviate these underlying pathologies. In order to mitigate the negative inflammatory effects of the secondary injury, we created a hydrogel comprised of hyaluronic acid (HA) and laminin, and we hypothesized that the anti-inflammatory properties of HA will decrease astrocyte activation and inflammation after TBI. C57/BL6 mice were subjected to mild-to-moderate CCI. Three days following injury, mice were treated with injection of vehicle or HA-Laminin hydrogel. Mice were sacrificed at three and seven days post injection and analyzed for astrocyte and inflammatory responses. In mice treated with vehicle injections, astrocyte activation was significantly increased at three days post-transplantation in the injured cortex and injury lesion. However, mice treated with the HA-Laminin hydrogel experienced significantly reduced acute astrocyte activation at the injury site three days post transplantation. Interestingly, there were no significant differences in astrocyte activation at seven days post treatment in either group. Although the microglial and macrophage response remains to be investigated, our data suggest that the HA-Laminin hydrogel demonstrates potential for TBI therapeutics targeting inflammation, including acute modulation of the astrocyte, microglia, and macrophage response to TBI.

Contributors

Agent

Created

Date Created
  • 2016-05

135721-Thumbnail Image.png

Predicting Fatigue in Military Personnel Using Wearable Technology

Description

Military personnel are affected by muscle fatigue during the various missions and training regimens for their work. Muscle fatigue is caused by the overuse and lack of nutrients to muscles.

Military personnel are affected by muscle fatigue during the various missions and training regimens for their work. Muscle fatigue is caused by the overuse and lack of nutrients to muscles. When a soldier is fatigued, they are unable to perform at their maximum potential and are also more susceptible to injury. For military personnel to save time and money as well as become more efficient within the missions they deploy soldiers, muscle fatigue should be predicted. Predicting fatigue will allow for a reduced rate of negative exercise-related impacts. This means that soldiers will be able to avoid potential life threatening situations they encounter due to the muscle fatigue. The newest technology in wearable devices includes clothing that incorporates heart rate monitors, breathing rate and breathing depth sensors, and a database that converts this information into the amount of calories burned during a workout. Fatigue can be tracked and predicted in the military using wearable clothing with activity sensors, preventing further injury to the soldiers and optimizing performance output at all times. For military personnel, the ability to predict fatigue using this technology would be beneficial to the soldiers and the military as a whole.

Contributors

Agent

Created

Date Created
  • 2016-05

136104-Thumbnail Image.png

Evaluating the Hemodynamics of Computational Fluid Dynamic Simulations as a Diagnostic Tool for Coarctation of the Aorta

Description

A specific type of Congenital Heart Defect (CHD) known as Coarctation (narrowing) of the Aorta (CoA) prevails in 10% of all CHD patients resulting in life-threatening conditions. Treatments involve limited

A specific type of Congenital Heart Defect (CHD) known as Coarctation (narrowing) of the Aorta (CoA) prevails in 10% of all CHD patients resulting in life-threatening conditions. Treatments involve limited medical therapy (i.e PGE1 therapy), but in majority of CoA cases, planned surgical treatments are very common. The surgical approach is dictated by the severity of the coarctation, by which the method of treatments is divided between minimally invasive and extensive invasive procedures. Modern diagnostic procedures allude to many disadvantages making it difficult for clinical practices to properly deliver an optimal form of care. Computational Fluid Dynamics (CFD) technique addresses these issues by providing new forms of diagnostic measures that is non-invasive, inexpensive, and more accurate compared to other evaluative devices. To explore further using the CFD based alternative diagnostic measure, this project aims to validate CFD techniques through in vitro studies that capture the fluid flow in anatomically accurate aortic structures. These studies combine particle image velocimetry and catheterization experimental techniques in order to provide a significant knowledge towards validation of fluid flow simulations.

Contributors

Agent

Created

Date Created
  • 2015-05

136919-Thumbnail Image.png

An Infusion Approach to Optimizing the Mutagenesis of Rhodobacter sphaeroides

Description

Photosynthesis is the process by which plants, algae, and bacteria use light energy to synthesize organic compounds to use as energy. Among these organisms are a kind of purple photosynthetic

Photosynthesis is the process by which plants, algae, and bacteria use light energy to synthesize organic compounds to use as energy. Among these organisms are a kind of purple photosynthetic bacteria called Rhodobacter sphaeroides, a non-sulfur purple bacteria that grows aerobically in the dark by respiration. There have been many contributions throughout the history of this group of bacteria. Rhodobacter sphaeroides is metabolically very diverse as it has many different ways to obtain energy--aerobic respiration and anoxygenic photosynthesis being just a couple of the ways to do so. This project is part of a larger ongoing project to study different mutant strains of Rhodobacter and the different ways in which carries out electron transfer/photosynthesis. This thesis focused on the improvements made to protocol (standard procedure of site directed mutagenesis) through a more efficient technique known as infusion.

Contributors

Agent

Created

Date Created
  • 2014-05

137283-Thumbnail Image.png

Development of Automatic Control Software for a Patient Monitoring Camera System

Description

Electroencephalogram (EEG) used simultaneously with video monitoring can record detailed patient physiology during a seizure to aid diagnosis. However, current patient monitoring systems typically require a patient to stay in

Electroencephalogram (EEG) used simultaneously with video monitoring can record detailed patient physiology during a seizure to aid diagnosis. However, current patient monitoring systems typically require a patient to stay in view of a fixed camera limiting their freedom of movement. The goal of this project is to design an automatic patient monitoring system with software to track patient movement in order to increase a patient's mobility. This report discusses the impact of an automatic patient monitoring system and the design steps used to create and test a functional prototype.

Contributors

Agent

Created

Date Created
  • 2014-05

158125-Thumbnail Image.png

Increased Enrichment and Generation of Isogenic Lines Using a Transient Reporter for Editing Enrichment

Description

Alzheimer’s disease (AD) affects over 5 million individuals each year in the United States. Furthermore, most cases of AD are sporadic, making it extremely difficult to model and study in

Alzheimer’s disease (AD) affects over 5 million individuals each year in the United States. Furthermore, most cases of AD are sporadic, making it extremely difficult to model and study in vitro. CRISPR/Cas9 and base editing technologies have been of recent interest because of their ability to create single nucleotide edits at nearly any genomic sequence using a Cas9 protein and a guide RNA (sgRNA). Currently, there is no available phenotype to differentiate edited cells from unedited cells. Past research has employed fluorescent proteins bound to Cas9 proteins to attempt to enrich for edited cells, however, these methods are only reporters of transfection (RoT) and are no indicative of actual base-editing occurring. Thus, this study proposes a transient reporter for editing enrichment (TREE) and Cas9-mediated adenosine TREE (CasMasTREE) which use plasmids to co-transfect with CRISPR/Cas9 technologies to serve as an indicator of base-editing. Specifically, TREE features a blue fluorescent protein (BFP) mutant that, upon a C-T conversion, changes the emission spectrum to a green fluorescent protein (GFP). CasMasTREE features a mCherry and GFP protein separated by a stop codon which can be negated using an A-G conversion. By employing a sgRNA that targets one of the TREE plasmids and at least one genomic site, cells can be sorted for GFP(+) cells. Using these methods, base-edited isogenic hiPSC line generation using TREE (BIG-TREE) was created to generate isogenic hiPSC lines with AD-relevant edits. For example, BIG-TREE demonstrates the capability of converting Apolipoprotein E (APOE), a gene associated with AD-risk development, wildtype (3/3) into another isoform, APOE2/2, to create isogenic hiPSC lines. The capabilities of TREE are vast and can be applied to generate various models of diseases with specific genomic edits.

Contributors

Agent

Created

Date Created
  • 2020